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Got FASTQ?



(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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Hi-C experiment 
Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289—293.



Mapping & Filtering 
Imakaev, M. V et al. (2012).  Nature Methods, 9(10), 999—1003.
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Mapping & Filtering 
Imakaev, M. V et al. (2012).  Nature Methods, 9(10), 999—1003.



• 80-90% each end  => 60-80% intersection 

• ~1% multiple contacts 

• Many of intersecting pairs will be lost in filtering… 

• Final 40-60% of valid pairs 

• One measure of quality is the CIS/TRANS ration 
(70-80% good)

How much you normally map?



Got mapped 
reads?



Interaction matrices

Zooming in on genome organization.  
Zhou, X. J., & Alber, F. Nature Methods (2012)



Normalizing HiC data
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Normalizing HiC data (a la Tanay)
Yaffe, E., & Tanay, A. (2011). Nature Genetics, 43(11), 1059–1065
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Normalizing HiC data (a la Mirny)
Imakaev, M., Fudenberg, G., McCord, R. P., Naumova, N., Goloborodko, A., Lajoie, B. R., et al. (2012). Nature Methods, 9(10), 999–1003.
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Interaction matrices

Experiments

Matrix analysos

TADs & A/BStructural Models

3D modeling



Hierarchical genome organisation

Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289—293.  
Rao, S. S. P., et al. (2014). Cell, 1—29.
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1–16, December 18, 2014 ª2014 Elsevier Inc. 3

CELL 7905

Please cite this article in press as: Rao et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Loop-
ing, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.11.021

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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A/B Compartment 
Human chromosome 14

Lieberman-Aiden et al. Science. 2009
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1–16, December 18, 2014 ª2014 Elsevier Inc. 3

CELL 7905

Please cite this article in press as: Rao et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Loop-
ing, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.11.021



TADs 
Chromosome 14
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1–16, December 18, 2014 ª2014 Elsevier Inc. 3

CELL 7905

Please cite this article in press as: Rao et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Loop-
ing, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.11.021



TADs 
How well we do…
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1–16, December 18, 2014 ª2014 Elsevier Inc. 3

CELL 7905

Please cite this article in press as: Rao et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Loop-
ing, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.11.021



Loops 
How well we do…

Forcato et al. Nat Methods. 2017 Jul; 14(7) 679-685
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1–16, December 18, 2014 ª2014 Elsevier Inc. 3

CELL 7905

Please cite this article in press as: Rao et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Loop-
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Comparing HiC data (GOTHIC)
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Genome organization influences transcriptional regulation by facili-
tating interactions between gene promoters and distal regulatory 
elements. Many contacts have been identified using chromosome 
conformation capture methodologies1–3. For example, the ChIA-PET 
(chromatin interaction analysis by paired-end tag sequencing) method 
has been used to map long-range interactions extending over hundreds  
of kilobases; however, these studies have only interrogated the  
subset of interactions involving highly transcriptionally active genes, 
whereas long-range interactions for weakly expressed and transcrip-
tionally inactive genes remain unknown. Although the 5C (chromatin  
conformation capture carbon copy) method is not restricted by the 
nature of interactions, thus far, it has only been applied to a few small 
genomic regions. The Hi-C method simultaneously captures all 
genomic interactions, which provides a population-average snapshot 
of the genome conformation within a single experiment4; yet, owing to  
the enormous complexity of Hi-C libraries, it is costly to sequence 
to sufficient depth to provide enough spatial resolution to interro-
gate specific contacts between gene promoters and distal regulatory  
elements5,6. To circumvent these issues, we have used solution hybrid-
ization selection, originally developed for exon sequencing7—and 
recently used to capture the interactions of a few hundred promoters  
from 3C libraries8—to enrich Hi-C libraries for genome-wide,  
long-range contacts of both active and inactive promoters.

RESULTS
A genome-wide, long-range interaction capture assay
We prepared three HindIII-digested Hi-C libraries from GM12878 
cells, a human Epstein-Barr virus (EBV)-transformed lymphoblastoid 
cell line that has been comprehensively assayed in the Encyclopedia 
of DNA Elements (ENCODE) Project, and two libraries from ex vivo 
CD34+ hematopoietic progenitor cells. One Hi-C library from each cell 
type was sequenced to examine the di-tag (paired-end read) interaction 
distribution and depth of read coverage (Supplementary Table 1).  
As anticipated, we observed a higher density of di-tag interaction reads 
between restriction fragments in cis as compared with fragments in 
trans, with the highest density occurring between fragments sepa-
rated by less than 20 kb (Supplementary Fig. 1a,b). We also observed 
demarcation of the genome into distinct contiguous, highly intracon-
nected topologically associated domains (TADs)5 (Supplementary 
Fig. 1c and Supplementary Table 2). The distribution of read cover-
age was typical for a Hi-C experiment. In our initial comparison, we 
downsampled all data sets to 45 million unique sequencing reads. 
Each restriction fragment was represented by an average of 143 
and 139 reads in the GM12878 and CD34+ libraries, respectively 
(Supplementary Fig. 1d). We processed the reads using binomial sta-
tistics to identify ligation fragments that were significantly enriched 
(q < 0.05). This approach recognizes ligation products between  

Mapping long-range promoter contacts in human cells 
with high-resolution capture Hi-C
Borbala Mifsud1,2,10, Filipe Tavares-Cadete1,9, Alice N Young3,10, Robert Sugar1, Stefan Schoenfelder3,  
Lauren Ferreira3, Steven W Wingett4, Simon Andrews4, William Grey5, Philip A Ewels3, Bram Herman6,  
Scott Happe6, Andy Higgs6, Emily LeProust6,9, George A Follows7, Peter Fraser3, Nicholas M Luscombe1,2,8 & 
Cameron S Osborne3,5

Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and 
target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate 
these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to 
examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared 
and cell type–restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active 
genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements 
marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-
associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights 
and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.
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Comparing HiC data (CHICAGO)
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METHOD Open Access

CHiCAGO: robust detection of DNA looping
interactions in Capture Hi-C data
Jonathan Cairns1†, Paula Freire-Pritchett1†, Steven W. Wingett1,2, Csilla Várnai1, Andrew Dimond1, Vincent Plagnol3,
Daniel Zerbino4, Stefan Schoenfelder1, Biola-Maria Javierre1, Cameron Osborne5, Peter Fraser1

and Mikhail Spivakov1*

Abstract

Capture Hi-C (CHi-C) is a method for profiling chromosomal interactions involving targeted regions of interest, such
as gene promoters, globally and at high resolution. Signal detection in CHi-C data involves a number of statistical
challenges that are not observed when using other Hi-C-like techniques. We present a background model and
algorithms for normalisation and multiple testing that are specifically adapted to CHi-C experiments. We implement
these procedures in CHiCAGO (http://regulatorygenomicsgroup.org/chicago), an open-source package for robust
interaction detection in CHi-C. We validate CHiCAGO by showing that promoter-interacting regions detected with
this method are enriched for regulatory features and disease-associated SNPs.

Keywords: Gene regulation, Nuclear organisation, Promoter-enhancer interactions, Capture Hi-C, Convolution
background model, P value weighting

Background
Chromosome conformation capture (3C) technology has
revolutionised the analysis of nuclear organisation, lead-
ing to important insights into gene regulation [1]. While
the original 3C protocol tested interactions between a
single pair of candidate regions (“one vs one”), subse-
quent efforts focused on increasing the throughput of
this technology (4C, “one vs all”; 5C, “many vs many”),
culminating in the development of Hi-C, a method that
interrogated the whole nuclear interactome (“all vs all”)
[1, 2]. The extremely large number of possible pairwise
interactions in Hi-C samples, however, imposes limita-
tions on the realistically achievable sequencing depth at
individual interactions, leading to reduced sensitivity.
The recently developed Capture Hi-C (CHi-C) technol-
ogy uses sequence capture to enrich Hi-C material for
multiple genomic regions of interest (hereafter referred
to as “baits”), making it possible to profile the global
interaction profiles of many thousands of regions globally
(“many vs all”) and at a high resolution (Fig. 1) [3–7].

CHi-C data possess statistical properties that set them
apart from other 3C/4C/Hi-C-like methods. First, in
contrast to traditional Hi-C or 5C, baits in CHi-C com-
prise a subset of restriction fragments, while any frag-
ment in the genome can be detected on the “other end”
of an interaction. This asymmetry of CHi-C interaction
matrices is not accounted for by the normalisation pro-
cedures developed for traditional Hi-C and 5C [8–10].
Secondly, CHi-C baits, but not other ends, have a further
source of bias associated with uneven capture efficiency.
In addition, the need for detecting interactions globally
and at a single-fragment resolution creates specific mul-
tiple testing challenges that are less pronounced with
binned Hi-C data or the more focused 4C and 5C assays,
which involve fewer interaction tests. Finally, CHi-C
designs such as Promoter CHi-C and HiCap [3–5, 11]
involve large numbers (many thousands) of spatially
dispersed baits. This presents the opportunity to in-
crease the robustness of signal detection by sharing
information across baits. Such sharing is impossible
in the analysis of 4C data that focuses on only a sin-
gle bait and is of limited use in 4C-seq containing a
small number of baits [12–14].
These distinct features of CHi-C data have prompted

us to develop a bespoke statistical model and a
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SOFTWARE Open Access

diffHic: a Bioconductor package to detect
differential genomic interactions in Hi-C data
Aaron T.L. Lun1,2 and Gordon K. Smyth1,3*

Abstract
Background: Chromatin conformation capture with high-throughput sequencing (Hi-C) is a technique that
measures the in vivo intensity of interactions between all pairs of loci in the genome. Most conventional analyses of
Hi-C data focus on the detection of statistically significant interactions. However, an alternative strategy involves
identifying significant changes in the interaction intensity (i.e., differential interactions) between two or more
biological conditions. This is more statistically rigorous and may provide more biologically relevant results.

Results: Here, we present the diffHic software package for the detection of differential interactions from Hi-C data.
diffHic provides methods for read pair alignment and processing, counting into bin pairs, filtering out low-abundance
events and normalization of trended or CNV-driven biases. It uses the statistical framework of the edgeR package to
model biological variability and to test for significant differences between conditions. Several options for the
visualization of results are also included. The use of diffHic is demonstrated with real Hi-C data sets. Performance
against existing methods is also evaluated with simulated data.

Conclusions: On real data, diffHic is able to successfully detect interactions with significant differences in intensity
between biological conditions. It also compares favourably to existing software tools on simulated data sets. These
results suggest that diffHic is a viable approach for differential analyses of Hi-C data.

Keywords: Hi-C, Genomic interaction, Differential analysis

Background
Chromatin conformation capture with high-throughput
sequencing (Hi-C) is a technique that is widely used to
study global chromatin organization in vivo [1]. Briefly,
samples of nuclear DNA are cross-linked and digested
with a restriction enzyme to release chromatin complexes
into solution (Fig. 1). Each complex may contain multi-
ple restriction fragments, corresponding to an interaction
between the associated genomic loci. After some process-
ing, proximity ligation is performed between the ends of
the restriction fragments. This favours ligation between
restriction fragments in the same complex. The ligated
DNA is sheared and purified for high-throughput paired-
end sequencing. Each sequencing fragment represents a

*Correspondence: smyth@wehi.edu.au
1The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, VIC 3052, Melbourne, Australia
3Department of Mathematics and Statistics, The University of Melbourne,
Parkville, VIC 3010, Melbourne, Australia
Full list of author information is available at the end of the article

ligation product, such that each read in the pair origi-
nates from a different genomic locus. The intensity of an
interaction between a pair of genomic loci can be quanti-
fied as the number of read pairs with one read mapped to
each locus. The output from the Hi-C procedure spans the
genome-by-genome “interaction space” whereby all pair-
wise interactions between loci can potentially be detected.
As such, careful analysis is required to draw meaningful
biological conclusions from this type of data.
Most analyses of Hi-C data have focused on iden-

tifying “significant” interactions from a single sample
[2, 3]. This is challenging because non-specific ligation
and apparent interactions can arise from a variety of unin-
teresting technical causes and rigorous analysis requires
a precise quantitative understanding of these artifacts.
Identifying biologically interesting interactions from a sin-
gle sample requires elaborate modeling of the background
signal in Hi-C experiments in order to correct for system-
atic biases due to GC content, mappability and fragment
length [3]. Such modeling inevitably involves assumptions
and approximations. Furthermore, the interaction space

© 2015 Lun and Smyth. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Model representation and scoring

i
i+2

i+1

i+n

d > d0

Harmonic Upper Bound 

€ 

if di, j ≥ di, j
0 ; ubHi, j = k di, j − di, j

0( )
2

if di, j < di, j
0 ; ubHi, j = 0

$ 

% 
& 

' & 
 

Harmonic

€ 

Hi, j = k di, j − di, j
0( )

2
 

Harmonic Lower Bound

€ 

if di, j ≤ di, j
0 ; lbHi, j = k di, j − di, j

0( )
2

if di, j > di, j
0 ; lbHi, j = 0

$ 

% 
& 

' & 
 

d < d0

d = d0



Neighbor fragments Non-Neighbor fragments 

From 3C data to spatial distances



Parameter optimization
maxdist

upfreqlowfreq



Parameter optimization



Optimization of the scoring function
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Model analysis: clustering and structural features
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Got 3D Models?



Human α-globin domain
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Human α-globin domain 
ENm008 genomic structure and environment

ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816

The ENCODE data for ENm008 region was obtained from the UCSC Genome Browser tracks for: RefSeq annotated genes, 
Affymetrix/CSHL expression data (Gingeras Group at Cold Spring Harbor), Duke/NHGRI DNaseI Hypersensitivity data (Crawford 

Group at Duke University), and Histone Modifications by Broad Institute ChIP-seq (Bernstein Group at Broad Institute of Harvard and 
MIT).
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Not just one solution
GM12878 K562
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The “Chromatin Globule” model
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of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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PolII

HBB

Eraf

Factory

in-out position of active genes, relative to factories, was related to
differential positioning relative to the chromosome territory. To test
this, we assessed the position of the infrequently transcribed gene Uros
relative to the chromosome 7 territory (Supplementary Fig. 2 online).
Although Uros is actively transcribed only 29% of the time, it was
found outside its chromosome territory in 79% of cases. In contrast,
the inactive gene Fgfr2 was outside the chromosome territory in only
19% of cases (Supplementary Fig. 2 online). These results confirm
that expressed genes are often located outside chromosome territories
and inactive genes are more often inside chromosome territories. But
these data do not show a correlation between positioning relative to
the chromosome territory and the on-off transcriptional behavior of
active genes. Instead, our data suggest that genes with transcriptional
potential are preferentially located outside chromosome territories,
but this alone is not sufficient for transcription.

RNAP II factories are limiting in vivo
We noticed that the number of RNAP II foci in erythroid cells was
markedly lower than that reported for fibroblast-like cell lines. Figure 6
shows deconvoluted, projected images derived from 3D image stacks
showing all the RNAP II transcription factories in single cell nuclei

from various tissues. We found that erythroid cells had, on average,
only 100–300 RNAP II foci per nucleus. Many other tissue types
have equivalent numbers of RNAP II foci, suggesting that erythroid
cells do not have abnormally low numbers of RNAP II foci.
In contrast, limited-passage mouse embryonic fibroblasts (MEFs)
have a much greater number and higher density of RNAP II foci,
similar to previous reports for HeLa and fibroblast cell lines. We
conclude that the number of transcription factories in tissues is far
more restricted than indicated by previous estimates from cultured
cells. It is, perhaps, not surprising that colocalization of transcribed
genes was not observed in a recent study using cultured fibroblast-like
cells27. Our data indicate that erythroid and other differentiated or
committed tissue types have a limited number of available transcription
sites. Coupled with estimates from expressed-sequence tag databases,
which show that erythroid cells express at least 4,000 genes (data not
shown), we conclude that many genes are obliged to seek out and
share the same factory.

3C analysis
Finally, we corroborated the colocalization of transcribed alleles by a
completely independent method. 3C generates a population-average
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Figure 6 Comparison of RNAP II foci in several tissue types and MEFs. (a) Deconvoluted maximum-intensity projections of image stacks of nuclei
immunostained for RNAP II. E10, embryonic blood; E14, fetal liver erythroid; AS, adult anemic spleen erythroid; Sp, normal adult spleen; Th, adult thymus;
Br, fetal brain. Scale bar, 10 mm. (b) Numbers of RNAP II foci counted for each nucleus shown in a.

Figure 5 Actively transcribed genes colocalize to
shared transcription factories. (a) Single optical
section of a triple-label DNA immuno-FISH on
erythroid cell, showing Hbb (green), Eraf (red)
and RNAP II foci (blue). The merged and
separate channels of the signals are shown in the
side panels. On the left of the main panel, an
Hbb signal alone associates with an RNAP II
focus. On the right, two colocalizing signals
associate with the same RNAP II focus. Scale
bar, 5 mm. (b) A separate optical section of the
same cell showing the second Eraf allele, which
does not associate with an RNAP II focus.
(c) Box and whiskers plot of the distributions of
3D measurements of the separation distance
between Hbb and Eraf loci (n ¼ 84), divided into
RNAP II–associated versus nonassociated.
(d) Triple-label RNA immuno-FISH on erythroid
cell showing Hbb-b1 (red), Eraf (green) and
RNAP II (blue). Left panels, colocalized trans-
cription signals associating with the same RNAP
II focus. Right panels, separate transcription
signals associating with distant RNAP II foci.
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ABSTRACT

Restraint-based modeling of genomes has been re-
cently explored with the advent of Chromosome Con-
formation Capture (3C-based) experiments. We pre-
viously developed a reconstruction method to re-
solve the 3D architecture of both prokaryotic and eu-
karyotic genomes using 3C-based data. These mod-
els were congruent with fluorescent imaging valida-
tion. However, the limits of such methods have not
systematically been assessed. Here we propose the
first evaluation of a mean-field restraint-based recon-
struction of genomes by considering diverse chro-
mosome architectures and different levels of data
noise and structural variability. The results show
that: first, current scoring functions for 3D recon-
struction correlate with the accuracy of the models;
second, reconstructed models are robust to noise
but sensitive to structural variability; third, the local
structure organization of genomes, such as Topo-
logically Associating Domains, results in more accu-
rate models; fourth, to a certain extent, the models
capture the intrinsic structural variability in the input
matrices and fifth, the accuracy of the models can be
a priori predicted by analyzing the properties of the
interaction matrices. In summary, our work provides
a systematic analysis of the limitations of a mean-
field restrain-based method, which could be taken
into consideration in further development of meth-
ods as well as their applications.

INTRODUCTION

Recent studies of the three-dimensional (3D) conforma-
tion of genomes are revealing insights into the organiza-
tion and the regulation of biological processes, such as gene

expression regulation and replication (1–6). The advent of
the so-called Chromosome Conformation Capture (3C) as-
says (7), which allowed identifying chromatin-looping inter-
actions between pairs of loci, helped deciphering some of
the key elements organizing the genomes. High-throughput
derivations of genome-wide 3C-based assays were estab-
lished with Hi-C technologies (8) for an unbiased identifi-
cation of chromatin interactions. The resulting genome in-
teraction matrices from Hi-C experiments have been exten-
sively used for computationally analyzing the organization
of genomes and genomic domains (5). In particular, a sig-
nificant number of new approaches for modeling the 3D or-
ganization of genomes have recently flourished (9–14). The
main goal of such approaches is to provide an accurate 3D
representation of the bi-dimensional interaction matrices,
which can then be more easily explored to extract biolog-
ical insights. One type of methods for building 3D models
from interaction matrices relies on the existence of a limited
number of conformational states in the cell. Such methods
are regarded as mean-field approaches and are able to cap-
ture, to a certain degree, the structural variability around
these mean structures (15).
We recently developed a mean-field method for model-

ing 3D structures of genomes and genomic domains based
on 3C interaction data (9). Our approach, called TADbit,
was developed around the Integrative Modeling Platform
(IMP, http://integrativemodeing.org), a general framework
for restraint-based modeling of 3D bio-molecular struc-
tures (16). Briefly, our method uses chromatin interaction
frequencies derived from experiments as a proxy of spatial
proximity between the ligation products of the 3C libraries.
Two fragments of DNA that interact with high frequency
are dynamically placed close in space in our models while
two fragments that do not interact as often will be kept
apart. Our method has been successfully applied to model
the structures of genomes and genomic domains in eukary-
ote and prokaryote organisms (17–19). In all of our studies,
the final models were partially validated by assessing their
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blue; note that the blue line is less smooth since LCR-Gg
interactions only occur during a subset of all time steps
represented by the red and black curves). Extending this
analysis to Ag and b indicates that all globin genes, but
particularly g-globin genes, tend to be located more per-
ipherally to the globule regardless of LCR contact
(Figure 4C). In contrast, in 293T cells, where the globule
is less compact, no preferential location is observed for
any of the locus sites of interest (Figure 4D). These
findings suggest that, in addition to favoring contacts
with the LCR, the CTCF-driven globule in K562
cells tends to displace the genes to be activated, i.e. the
g-globin genes here, away from the surrounding
chromatin.

Dominant CTCF interactions and stiff chromatin prevent
contacts between the LCR and globin genes in 293T cells

The interaction potentials observed in 293T cells can be
divided into two categories based on strength (Sup-
plementary Table S1). The strongest potentials are
between C-08 and C-20 and between C-20 and C-21.

A polymer model where these interactions alone are
present leads to a reduction of the tendency for globin
genes to be spatially close to the LCR when the chromatin
fiber is stiff (Supplementary Figure S5). To investigate the
influence of these interactions, in particular whether the
strongest interactions found in 293T cells are sufficient to
decrease LCR–gene interactions compared to K562 cells,
we used two additional models: one where only the two
strongly interacting sites are present (ignoring all other
interactions measured by 3C in 293T cells) and another
using chromatin with no interacting sites. Since the inter-
action events we defined earlier (40 nm between chromatin
fiber centers) do not always occur in 293T cells as they do
in K562 cells, we used the minimal distance obtained in
100 simulations as an alternative metric to represent
LCR–target proximities.
The model with no interacting sites serves as a baseline

(red lines, Figure 5). One might hypothesize that
introducing any interacting sites in this locus would
bring the LCR closer to targets on average. However,
interestingly, the model with just two pairs of strongly

Figure 4. Chromatin conformations favoring contacts between the b-globin genes and LCR in K562 cells. (A) Typical conformation of the 1Mbp
regions around the b-globin locus during a contact between LCR (green+star) and Gg (green). Blue sites: CTCF sites that form a connected network
of interaction (Supplementary Figure S1). Darkest blue sites: CTCF sites that surround the b-globin locus. Red sites: the isolated interaction between
C-08 and C-10. The conformation can be divided into a loop (stabilized by the red sites) and a compact globule (dashed orange ellipse) encompassing
the region from C-03 to C-10. (B) Spatial location of the contact: using 1000 equilibrium simulations of the same best-fit polymer as in A, we report
(i) the radial mass distribution of the compact globule, i.e. the average probability density for the location of the C-03 to C-10 region with respect to
the globule center of mass; (ii) the radial distribution of Gg and LCR during contacts and (iii) the radial distribution of the LCR (no matter the
position of Gg). One can see that the Gg/LCR contacts tend to occur away from the globule center. (C) Spatial location of the globin genes in K562
(obtained from 100 simulations of the best-fit polymer). Genes tend to be located away from the center regardless of LCR contact. Large distances
are particularly enhanced in the case of the g genes. (D) Same as in C but for 293T cells. No particular location can be observed for any of the genes.
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Figure 3. Spatial organization of genomic and epigenetic features.We used the 3D chromosomal structure BACH predicted for chromosome
2 in the HindIII sample as an illustrative example. In Figure 3A,Figure 3L, each sphere represent a topological domain. The volume of each sphere is
proportional to the genomic size of the corresponding topological domain. In Figure 3A, the red, white and blue colors represent topological
domains belonging to compartment A, straddle region and compartment B, respectively. Topological domains with the same compartment label
tend to locate on the same side of the structure. In Figure 3B,Figure 3L, the red, white and blue colors represent topological domains with high
value of features, median value of features and low value of features, respectively. The color scheme is proportional to the magnitude of the
continuous measurement of genetic and epigenetic features. We also report the odds ratio (OR) of the two by two contingency table and the p-value
of Fisher’s exact test. (A) Spatial organization of compartment label. OR= 39.20, p-value= 4.4e-16. (B) Spatial organization of gene density. OR= 13.21,
p-value= 2.2e-8. (C) Spatial organization of gene expression. OR= 4.00, p-value= 0.0012. (D) Spatial organization of chromatin accessibility.
OR= 26.88, p-value= 5.9e-12. (E) Spatial organization of genome-nuclear lamina interaction. OR= 40.00, p-value= 4.9e-13. (F) Spatial organization of
DNA replication time. OR= 32.00, p-value= 1.1e-10. (G) Spatial organization of H3K36me3. OR=10.91, p-value= 1.0e-7. (H) Spatial organization of
H3K27me3. OR=2.17, p-value= 0.0706. (I) Spatial organization of H3K4me3. OR=24.43, p-value= 2.1e-11. (J) Spatial organization of H3K9me3.
OR= 15.71, p-value= 6.7e-8. (K) Spatial organization of H4K20me3. OR= 45.10, p-value= 1.0e-13. (L) Spatial organization of RNA polymerase II.
OR = 5.47, p-value= 0.0001.
doi:10.1371/journal.pcbi.1002893.g003

Spatial Organizations of Chromosomes
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TCC frequency (Supplementary Methods). 
If a contact is not enforced, no assumptions 
are made about the relative positions of the corresponding spheres. 
Therefore, in contrast to other approaches12,30, our method does not 
correlate contact frequencies with average distances; it relies purely 
on the TCC data by incorporating only the presence or absence of 
chromatin contacts.

In a diploid cell, most loci are present in two copies. Because the 
TCC data do not distinguish between these copies, the optimal assign-
ment of each sphere to a specific contact is determined as a part of our 
optimization process31 using the integrative modeling platform28,29.

Finally, starting from random positions, we simultaneously opti-
mized the positions of all the spheres in a population of 10,000 genome 
structures to a score of zero, indicating that no restraint violations 
remained (Supplementary Methods).

To test how consistent this structure population is with the experi-
ment, we calculated the block contact frequency map from the popu-
lation of structures and compared it with the original data. The two 
were strongly correlated with an average Pearson’s correlation of 0.94, 
confirming the excellent agreement between contact frequencies in 
the structure population and experiment (Supplementary Fig. 7b–d). 
Furthermore, three independently calculated populations showed that 
our structure population was highly reproducible (Pearson’s r > 0.999), 
which also indicates that, at this resolution, the size of the model 
population was sufficiently large (Supplementary Methods).

Structural features of the genome population
Because chromatin contacts in the TCC data are observed over a 
wide range of frequencies, the resulting population shows a fairly 
large degree of structural variation (Supplementary Fig. 8a,b).  
For instance, on average only 21% of contacts are shared between 
any two structures in the population (Supplementary Fig. 8c). 

Despite this large heterogeneity, the structure population reveals 
a distinct and nonrandom chromosome organization. Specifically, 
the population clearly identifies the preferred radial positions of  
chromosomes (Fig. 6a,b and Supplementary Fig. 9b). These posi-
tions strongly agree with independent FISH studies in lymphoblasts4,5. 
The Pearson’s correlation between the FISH- and population-based 
average positions was 0.71 (P < 10−3) for the 22 chromosomes 
whose radial positions were previously determined4. Instead, radial 
positions in a control population generated without TCC data did 
not agree with the FISH data (Pearson’s r = –0.2, Supplementary  
Fig. 9a), indicating that TCC data are sufficient for generating the 
correct radial distributions seen in the imaging experiments4. In 
general, the radial chromosome positions tend to increase with their 
size, with some noticeable exceptions (Fig. 6b). One of these cases is 
the radial positions of chromosomes 18 and 19 which, despite their 
similar size, we observed at different positions5. Chromosome 19 
is located closer to the center of the nucleus, whereas chromosome 
18 is preferentially located closer to the nuclear envelope (Fig. 6a). 
Furthermore, the homologous copies of chromosome 18 are often 
distant from each other whereas those of chromosome 19 are often 
closely associated (Fig. 6a and Supplementary Fig. 9b), in agreement 
with independent experimental evidence5.

Structure-based analysis of territory colocalizations
When chromosome territories are clustered based on their average 
distances, two main groups can be identified (Fig. 6c). The first 
group (chromosomes 1, 11, 14–17 and 19–22) tends to occupy  
the central region of the nucleus as is evident from their population-
based joint localization probabilities (Fig. 6d). These chromosomes 
also tend to have relatively high gene densities32. The second group 
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Figure 6 Population-based analysis of 
chromosome territory localizations in the nucleus. 
(a) The distribution of the radial positions for 
chromosomes 18 (red dashed line) and 19 (blue 
solid line), calculated from the genome structure 
population. Radial positions are calculated for 
the center of mass of each chromosome and are 
given as a fraction of the nuclear radius. (b) The 
average radial position of all chromosomes plotted 
against their size. Error bars, s.d. (c) Clustering of 
chromosomes with respect to the average distance 
between the center of mass of each chromosome 
pair in the genome structure population. The 
clustering dendrogram, which identifies two 
dominant clusters is shown on top. The matrix of 
average distances between pairs of chromosomes 
is shown at the bottom. The intensity of blue 
color increases with decreasing distance. (d) (Left 
panels) The density contour plot of the combined 
localization probability for all the chromosomes in 
cluster 1 (top panel) and cluster 2 (bottom panel) 
calculated from all the structures in the genome 
structure population. The rainbow color-coding 
on the central nuclear plane ranges from blue 
(minimum value) to red (maximum value).  
(Right panels) A representative genome 
structure from the genome structure population. 
Chromosome territories are shown for all the 
chromosomes in cluster 1 (top) and all the 
chromosomes in clusters 2 (bottom). The 
localization probabilities are calculated following 
a previously described procedure28.

(e.g., chromosome 4,whose size is 1.5Mb), the LPD is highest in the
central region of the nucleus again along the central axis.

We then ask what factors are responsible for the chromo-
somes’ preferred locations. For each chromosome, we calculate a new
structure population for a nucleus containing only a single chro-
mosome but otherwise constrained in a manner identical to the
full simulation (i.e., the single chromosome population) (Fig. 2C).
Comparing the two structure populations reveals great differences
for each chromosome location (Fig. 2D). For example, in the full
simulation, large chromosomes reside substantially farther from
the SPB region toward the nucleolus thanwould be expected based
on chromosome tethering alone. The differences are caused by a vol-
ume exclusion effect: Because of tethering, the chromosomes must
compete for the limited space around the SPB. Smaller chromosomes
arenaturallymore restricted to regions closer to the SPB,which in turn
tends to exclude parts of larger chromosomes from these regions. For
smaller chromosomes, the opposite effect is observed; in the full
simulation, they exhibit an increased probability density around the
SPB (Supplemental Fig. 1). Importantly, due to the volume exclusion
effect, the preferred location of a chromosome is not defined by
tethering alone but also depends on the total number and lengths of
all other chromosomes in the nucleus.

Genome-wide chromosome contact patterns

Next, we measure how often any two chromosome chains come
into contact with each other over the entire structure population.
Interestingly, most chromosomes show distinct preferences for

interacting with certain others. For instance, chromosome 1 has
a significantly higher chance of interacting with chromosomes 3
and 6 than with any other chromosome. Its interactions with the
large chromosomes 4, 7, and 12 are substantially depleted (Fig. 3A).
Strikingly, almost identical chromosome interaction preferences
are observed in an independent genome-wide chromosome con-
formation capture experiment (Fig. 3A; Supplemental Fig. 2A; Duan
et al. 2010). Pearson’s correlation between the chromosome-pair
contact frequencies in our structure population and those
detected in the experiment is 0.94 (P< 10!15). In the randomcontrol,
the contact frequencies do not display any significant chromosome-
pair contact preferences (Pearson’s correlation between experimen-
tal data and the random control is !0.57) (Supplemental Fig. 2B).

Next, we compare contact frequencies for all possible pairings
of the 32 chromosome arms (Fig. 3B,C). It is evident that some
pairs of chromosome arms have a greater propensity to interact
than others. In particular, chromosome arms with <500 kb (chro-
mosomes 1, 3, 5, 6, 8, and 9) are more likely to interact with each
other than longer arms. For instance, the short arm of chromo-
some 1R is almost eight timesmore likely to interact with the short
arm of chromosome 3L than with the long arm of 4R. Also these
observations are in almost complete agreement with the confor-
mation capture experiments (Pearson’s correlation coefficient of
0.93, P < 10!15) (Fig. 3C,D; Duan et al. 2010).

Finally, when chromatin contacts are analyzed at a resolution
of 32 kb, the contact frequency heat map of the structure pop-
ulation shows highly organized cross-shaped patterns (Fig. 3E).

Figure 1. Population-based analysis of the S. cerevisiae genome organization. To analyze structural features of the genome, we defined an optimization
problem with three main components. (Top panels) A structural representation of chromosomes as flexible chromatin fibers (center), a structural rep-
resentation of the nuclear architecture (left), and the scoring function quantifying the genome structure’s accordance with nuclear landmark constraints
(right). (Middle panels) An optimization and sampling method, which minimizes the scoring function to generate a population of genome structures that
entirely satisfies all landmark constraints. (Bottom panels) The statistical analysis and comparison of structural features from the population of 3D genome
structures with all the experimental data.
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A prominent feature emerges from all four clusters: the arms
are wound sinusoidally through space with roughly 1.5 period
repeats per arm. The partial mirroring between clusters 1 and 2
andclusters 3 and4has the effect of causing the arms tobeeither
intertwined (clusters 3 and 4) or separated (clusters 1 and 2). We
favor the intertwined conformation, as the corresponding model
clusters have lower variability (Figure S2C) and lower IMP objec-
tive function scores (Table S2). However, it is possible that both
conformations exist within a population of swarmer cells.

The parS Region Dictates the Orientation of the Entire
Caulobacter Chromosome
Our models suggest that the parS sites play a direct role in orga-
nizing the swarmer cell chromosome. Such a finding is con-
sistent with recent analyses that have suggested that these
sequence elements are specifically anchored to the Caulobacter
old cell pole through interactions with the ParB and PopZ
proteins (Bowman et al., 2008; Ebersbach et al., 2008; Toro
et al., 2008). Thus, we hypothesized that the orientation of the
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Figure 2. Modeling Reveals the 3D Architecture of the Swarmer Genome
(A) Outline of our modeling methodology. Restriction fragments were modeled as points connected by springs. The distance derived from the contact frequency

between pairs of fragments was used (i) to define the equilibrium length of the spring (see Supplemental Experimental Procedures) that connected these

fragments (ii). The 3D coordinates of all points were randomly initialized (iii), and optimization was performed to derive a structure that minimally violates these

equilibrium lengths (iv, a). This initialization and optimization procedure was repeated thousands of times to generate an ensemble of structures. These structures

were superimposed and grouped based upon their coordinates, yielding clusters of models in which the 3D coordinates of restriction fragments are structurally

very similar (iv, b).

(B) 3D density map representations of the four clusters from a wild-type swarmer modeling run. Each queried fragment is represented by a 3D Gaussian that has

a correlation coefficient >0.8 with the space this fragment occupies across all models within the cluster. The positioning of the maximally polar fragment (located

!7 kb from the parS) elements is indicated in orange.

(C) The centroid model of swarmer clusters 1–4. For more information regarding these clusters, see Figure S2 and Table S2.
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cluster. GM12878 models were locally consistent; only one fragment  
(reverse 21) of these models did not have a consistent local conforma-
tion (that is, not superimposable within 150 nm for more than 75% 
of the models). In K562 cells, as many as 82% of the fragments were 
consistent across the models. This analysis shows that even in the 
more variable K562 models most of the region contains conserved 
local features, and that the diversity is the result of variable position-
ing of only a small minority of fragments (18%).

Models reproduce known long-range interactions
We determined whether the 3D models reflected the known long-
range interactions involving the A-globin genes (Fig. 4). We used the 
selected cluster of models to calculate the average distance between 
the restriction fragment containing the A-globin genes and other 
restriction fragments in ENm008 in both GM12878 and K562 cells. 
Restriction fragments containing the enhancer (HS40) and A-globin 
genes were closely juxtaposed in K562 cells (159.1 o 13.3 nm). In 
contrast, HS40 was the only fragment that was located farther from 
the A-globin genes in the inactive GM12878 cells (228.2 o 17.3 nm)  
than in K562 cells; all other fragments in GM12878 cells were 
located closer to the A-globin genes (Fig. 4c). These observations 
are consistent with previous 3C experiments showing that strong inter-
action between HS40 and the A-globin genes is evident only when 
the genes are expressed.

Validation by fluorescence in situ hybridization
We used an independent method, fluorescence in situ hybridization 
(FISH), to validate a particular aspect of our 3D models for the ENm008 
region. For small genomic domains such as the one studied here, deter-
mining the spatial positions of individual restriction fragments within 
the domain by FISH is not straightforward given the resolution of 
light microscopy, which is limited to ~200 nm. However, the models 
of the ENm008 domain predict that the locus is in a more extended 
conformation in K562 cells than in GM12878 cells, which would lead 
to a greater average 2D interphase distance between the ends of the 
500-kb locus. Prior work has demonstrated that this distance is large 
enough to be measured by interphase mapping with FISH41.

We found that in GM12878 these loci were on average 318.8 o 17.0 nm  
apart, whereas in K562 cells they were 391.9 o 23.4 nm apart.  
These differences, which are statistically significant (P < 0.011), 
show that in K562 cells the locus is in a more extended conforma-
tion, consistent with the models generated by IMP, in which the 2D 
distances (that is, without considering the orientation of the model) 
were 198.9 o 0.7 nm and 434.6 o 1.4 nm for GM12878 and K562 
models, respectively (Fig. 4d,e).

Formation of chromatin globules
A noteworthy feature observed in both cell lines was the formation 
of compact chromatin clusters, which we termed chromatin globules. 
In GM12878 cells, the ENm008 region forms a single chromatin 
 globule, whereas in K562 cells, the locus forms two chromatin globules 
(Fig. 4a,b and Supplementary Videos 1 and 2). This large-scale 
 difference in conformation between the two cell lines is also evidenced 
by the contact-map differences between GM12878 and K562 models 
(Fig. 5a). The heat map shows that most distances in GM12878 are 
smaller than in K562 cells, consistent with the formation of a single 
compact chromatin globule. However, also consistent with the 5C data, 
the A-globin genes and the distant regulatory elements are closer in 
space in K562 cells than in GM12878 cells (red areas in Fig. 5a).

To explore whether these globules have some degree of internal 
organization, we determined the locations of genes and putative regu-
latory elements within the chromatin globules. We measured the radial 
positions of active genes, gene promoters, HSs, sites bound by CTCF 
and sites marked with trimethylated histone H3 Lys4 (H3K4me3) by 
calculating the average distance between each corresponding restric-
tion fragment and the geometrical center of the globules. Notably, we 
found that in the IMP models from both cell types, active genes and 
gene promoters are enriched near the center of the globule, whereas 
inactive genes and restriction fragments that do not contain genes are 
more peripheral (Fig. 5b). In contrast, HSs, CTCF-bound sites and 
sites marked by H3K4me3 are not preferentially located in the center, 
but are found throughout the globules.

In GM12878 cells, we visually identified nine loops ranging from 
about 20 to 70 kb long, with an average length of ~50 kb, an average 
distance between anchors of 102.8 o 5.1 nm and an average path 
length of 547.9 o 96.9 nm (Fig. 5c). In K562 cells, the locus forms two 
chromatin globules (five loops and two loops, respectively) ranging 
from about 30 to 70 kb, with an average length of ~60 kb, an average 
distance between anchors of 231.2 o 129.2 nm (190.6 o 43.5 nm not 
considering loop 6 connecting the two globular domains) and an aver-
age path length of 600.1 o 90.2 nm. Because our experiments covered 
only the ENm008 region, we were not able to determine whether the 
second chromatin globule observed in K562 cells contained additional 
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Figure 4 3D models of the ENm008 ENCODE region containing the 
A-globin locus. (a) 3D structure of the GM12878 models represented 
by the centroid of cluster 1. The 3D model is colored as in its linear 
representation (Fig. 1a). Regulatory elements are represented as spheres 
colored red (HS40), orange (other HSs) and green (CTCF). (b) 3D 
structure of the K562 models represented by the centroid of cluster 2. 
Data are represented as in panel a. (c) Distances between the A-globin 
genes (restriction fragments 31 and 32) and other restriction fragments 
in ENm008. The plot shows the distribution and s.d. of the mean of 
distances for GM12878 models in cluster 1 (blue) and K562 models in 
cluster 2 (red). (d) Average distances (and their s.e.m.) between a pair 
of loci located on either end of the ENm008 domain, as determined 
by FISH with two fosmid probes (see Online Methods) and from a 2D 
representation of the IMP-generated models in both cell lines.  
(e) Example images obtained with FISH of GM12878 and K562 cell lines. 
The images show smaller distances between the probes in GM12878 than 
in K562 cell lines.

Umbarger (2011) Molecular Cell

from the spatial distance measurements directly to the cumula-
tive frequency distributions as predicted by a 3D random walk
(see Experimental Procedures for details). Interestingly, the the-
oretical distance distribution for a 3D random walk approached
the distance distribution observed for the DH cluster (Figure 7;
h4-h5). These data indicate that the probabilities for DH elements
to be in close proximity to the JH elements approach those ob-
served for a random walk. In contrast, for larger genomic sepa-
rations, the theoretical distance distributions did not compare
well with the observed spatial distance distribution, consistent
with the presence of chromatin territories and spatial confine-
ment (Figure 7; h4-h7, h4-h10 and h4-h11). Consequently, we

conclude that it is the Igh topology that mechanistically permits
long-range genomic interactions to occur in pro-B cells with
relatively high frequency.

DISCUSSION

Immunoglobulin Heavy-Chain Locus Topology
How chromosomes are structured in 3D space is largely un-
known and only recently data have emerged that have provided
insight into the organization of the chromatin fiber in eukaryotic
nuclei. Such studies have described the yeast chromatin fiber,
in large part, as a worm-like chain (Bystricky et al., 2004). The

Figure 5. 3D Topology of the Immunoglobulin Heavy-Chain Locus
The 3D topology of the Igh locus in pre-pro-B and pro-B cells was resolved using trilateration. The relative positions of 12 genomic markers spanning the entire

immunoglobulin heavy-chain locus were computed. Two different views are shown for both cell types.

(A) 3D Topology of the Igh locus in pre-pro-B cells.

(B) 3D Topology of the Igh locus in pro-B cells. Grey objects indicate CH regions and the 30 flanking region of the Igh locus. Blue objects indicate proximal VH

regions. Green objects indicate distal VH regions. Red line indicates the linker connecting the proximal VH and JH regions. Linkers are indicated only to show

connectivity.
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Figure 5. Three-dimensional modeling of the silent HoxA cluster identifies CTCF as a likely candidate mediating chromatin loops. (A) Example of a
5C3D output model of the transcriptionally silent HoxA cluster. Green lines represent genomic DNA, and vertices define boundaries between
consecutive restriction fragments. Colored spheres as indicated in the legend below identify the transcription start site of corresponding paralog
group. (B) Three-dimensional local base density scan of the transcriptionally silent HoxA cluster. Local base densities at consecutive 10 bp was
estimated in 100 possible 5C3D outputs models with Microcosm 1.0 (y-axis) and represented graphically along the corresponding genomic region
(ENCODE hg18 Chr7:27079118 to 27236536) (x-axis). The weight of the trace is proportional to the standard deviation with sharper areas indicating
smaller deviations. (C) CTCF binds to multiple discrete sites conserved in various cell lines at the 50-end of the HoxA cluster. Conserved CTCF sites
are highlighted by yellow vertical lines. (D) Conserved CTCF binding sites are clustered three-dimensionally at the 50-end of the HoxA cluster. The
position CTCF binding sites numbered in (C) are illustrated in the example 5C3D output model presented in (A). CTCF binding sites are represented
by colored spheres as indicated in the legend below. (E) CTCF binding sites are significantly close to each other in three-dimensional models.
Distances between pairs of CTCF binding sites were measured with Microcosm 2.0. and expressed as P-values summarized in a heatmap. Numbers at
the top and on the left of heatmap identify CTCF binding sites. Intersecting column and row number identifies the CTCF pair. P-values are
color-coded based on the scale presented on the right. P-values were calculated as described in ‘Materials and Methods’ section.
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Three-dimensional models of the human HoxA cluster during cellular differentiationFigure 8
Three-dimensional models of the human HoxA cluster during cellular differentiation. 5C array datasets from (a) undifferentiated and (b) differentiated 
samples were used to predict models of the HoxA cluster with the 5C3D program. Green lines represent genomic DNA and vertices define boundaries 
between consecutive restriction fragments. Colored spheres represent transcription start sites of HoxA genes as described in the legend. (c) Increased 
local genomic density surrounding 5' HoxA transcription start sites accompanies cellular differentiation. The y-axis indicates local genomic density and HoxA 
paralogue groups are identified on the x-axis. A linear schematic representation of the HoxA cluster is shown at the top, and green shading highlights the 
region of greatest density change. Error bars represent standard deviations.
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chromosomal pairings, except for pairing between the two smallest
arms (1R and 9R) (Supplementary Fig. 16a). However, the preference
for intra-chromosomal arm pairing versus inter-chromosomal arm
pairing decreased with increasing distance from centromeres
(Supplementary Fig. 16 b–d). These observations indicate that yeast
chromosome arms are highly flexible.

Combining our set of 4,097,539 total and 306,312 distinct inter-
actions with known spatial distances that separate sub-nuclear land-
marks12, we derived a three-dimensionalmap of the yeast genome. To

depict intra-chromosomal folding, we incorporated a metric that
converts interaction probabilities into nuclear distances (assigning
130 bp of packed chromatin a length of 1 nm, ref. 30) (Supplemen-
tary Figs 17 and 18 and Supplementary Methods). Using this ruler,
we calculated the spatial distances between all possible pairings of the
16 centromeres (Supplementary Tables 14 and 15) The results are
consistent with previous observations12.

The resulting map resembles a water lily, with 32 chromosome
arms jutting out from a base of clustered centromeres (Fig. 5).
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Figure 4 | Inter-chromosomal interactions. a, Circos diagram showing
interactions between chromosome I and the remaining chromosomes. All 16
yeast chromosomes are aligned circumferentially, and arcs depict distinct
inter-chromosomal interactions. Bold red hatch marks correspond to
centromeres. To aid visualization of centromere clustering, these
representations were created using the overlap set of inter-chromosomal
interactions identified from both HindIII and EcoRI libraries at an FDR
threshold of 1%. Additional heat maps and Circos diagrams are provided in
Supplementary Fig. 9. b, Circos diagram, generated using the inter-
chromosomal interactions identified from the HindIII libraries at an FDR
threshold of 1%, depicting the distinct interactions between a small and a
large chromosome (I and XIV, respectively). Most of the interactions
between these two chromosomes primarily involve the entirety of

chromosome I, and a distinct region of corresponding size on chromosome
XIV. c, Inter-chromosomal interactions between all pairs of the 32 yeast
chromosomal arms (the 10 kb region starting from the midpoint of the
centromere in each arm is excluded). For each chromosome, the shorter arm
is always placed before the longer arm. Note that the arms of small
chromosomes tend to interact with one another. The colour scale
corresponds to the natural log of the ratio of the observed versus expected
number of interactions (see Supplementary Materials). d, Enrichment of
interactions between centromeres, telomeres, early origins of replication,
and chromosomal breakpoints. To measure enrichment of strong
interactions with respect to a given class of genomic loci, we use receiver
operating curve (ROC) analysis.
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Figure 5 | Three-dimensional model of the yeast
genome. Two views representing two different
angles are provided. Chromosomes are coloured
as in Fig. 4a (also indicated in the upper right). All
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while chromosome XII extends outward towards
the nucleolus, which is occupied by rDNA repeats
(indicated by the white arrow). After exiting the
nucleolus, the remainder of chromosome XII
interacts with the long arm of chromosome IV.
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Toy models
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Toy interaction matrices
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Reconstructing toy models

chr150_TAD
α=50  
Δts=1
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α=100  
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TADbit-SCC: 0.91 

TADbit-SCC: 0.82 



TADs & higher-res are “good”
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Noise is “OK”
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Structural variability is “NOT OK”
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Can we predict the accuracy of the models?
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Skewness “side effect”
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Can we predict the accuracy of the models?
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distance Spearman correlation coefficient (dSCC) between
all pairwise distances of particles in the best-reconstructed
model and the corresponding ones in each of the 100 origi-
nal toy structures was calculated. The dSCCmeasure varies
between −1.0 and 1.0 for comparisons where the distances
perfectly anti-correlate or correlate, respectively. Therefore,
a model with a dSCC of 1.0 indicates good accuracy regard-
less of the scale of the compared structure.

MMP

With the aim of identifying a priori whether an interaction
matrix has the potential of being use for modeling, we cal-
culated from each of the 168 simulated Hi-C matrices three
different measures: (i) the contribution of the significant
eigenvectors (SEV) from the matrix, (ii) the skewness and
(iii) the kurtosis of the distribution of Z-scores in the ma-
trix.

The contribution of the SEV score was obtained by first
calculating the eigenvectors of the interaction matrix and
the percentage of contribution of their corresponding eigen-
values. Next, we randomized 100 times the interaction ma-
trix by shuffling the cells in the matrix that are equidistant
from the diagonal. This shuffling strategy preserved the ex-
pected exponential decay of interactions as we go from the
diagonal to the anti-diagonal corners of the matrix. From
the 100 randomizedmatrices, we also calculated their eigen-
vectors and the percentage of contribution of their cor-
responding eigenvalues. We then set as ‘SEV’ those with
eigenvalues above the mean eigenvalue plus two standard
deviations of the equivalent eigenvectors in the random set
of matrices. The final SEV score was the sum of the differ-
ences of the contribution of eigenvalues of all SEV:

SEV =
∑

i

evi − revi

where evi corresponds to the contribution of the eigenvalue
of the SEV i in the interaction matrix and revi is the aver-
age contribution of the eigenvalue of the same eigenvector
in the randomized 100 interaction matrices. Overall, large
SEV scores are indicative of good potential for modeling.
Intuitively, they indicate the presence of specific contacts
that are not just the results of a random conformation of
the chromosome.

The other two descriptive statistics were calculated di-
rectly from the distribution of Z-scores in theHi-Cmatrices.
First, the skewness statistic (SK) assesses in a singlemeasure
whether a score is skewed toward the right or left tails of its
distribution. The kurtosis statistic (KT) complements the
interpretation of the skewness. For example, matrices with
skewness close to zero may result from multi-modal distri-
butions of Z-scores. In such cases, the distribution will re-
sult in large KT scores. Therefore, the SK score will indicate
skewness of the matrix toward positive or negative Z-scores
and the KT score will indicate whether a matrix results or
not in single-peaked distribution of Z-scores. For optimal
modeling in TADbit, we expect no skewness and a single
peak in the Z-score distribution. Both the skewness and the
KT statistic were estimated using the SciPy python library

(http://www.scipy.org). The SK and KT are calculated as:

SK =
∑N

i=1 (xi − x̄)3

∑N
i=1 (xi − x̄)2

3
/2

KT =
∑N

i=1 (xi − x̄)4
∑N

i=1 (xi − x̄)22

where N is the number of bins in the Z-score distribution
and xi corresponds to the frequency of a given bin i.

Finally, to calculate the MMP score, we used the size
(number of bins in the matrix), SEV, SK and KT for all 168
simulated Hi-C matrices as input to train a classifier with a
linear regression kernel using Weka (28). During the train-
ing of the classifier, we used the actual accuracy of the pro-
duced 3D models (that is, the dSCC measure) as a target
goal. We decided to use the dSCC measure instead of the
dRMSD accuracy measure because it is independent of the
scale and size of the objects to compare. The classifier, thus,
aims at identifying a linear combination of the four matrix
measures to produce a final score that best correlates with
the dSCC of the models. We trained the classifier with a 10-
fold cross-validation procedure, which resulted in a corre-
lation coefficient of 0.84 between the MMP score and the
dSCC measure. The MMP score is calculated as:

MMP = −0.0002 ∗ Size + 0.0335 ∗ SK − 0.0229∗
KU + 0.0069 ∗ SEV + 0.8126

RESULTS

Toy genome structures and derived matrices

We investigated the reconstruction efficiency of six types
of toy genomes hereafter labeled by ch40, ch75, ch150,
ch40 TAD, ch75 TAD and ch150 TAD depending on the
bp density along the chromosome and on the presence, or
not, of TAD-like organization. To this end, for each toy
genome, we generated seven sets of 100 different conforma-
tions, corresponding to seven different structural variability
levels. More precisely, the nth set was generated by extract-
ing 100 conformations separated by a time step of!t = 10n
iterations in the correspondingWLC simulation (Figure 2).
Altogether, for each toy genome we generated 700 different
chromosome conformations that were distributed among
seven different sets, with set 0 having the lowest structural
variability (!t = 1) and set 6 the highest (!t = 106). Such
structural sets were then used to derive four contact maps
with varying levels of experimental noise (that is, with ! =
50, 100, 150 and 200), which simulate the results of a hy-
pothetical Hi-C experiment. Finally, the contact maps were
input to TADbit to build 3D models using a previously im-
plemented protocol (9). The initial structural sets for the
six tested toy genome architectures, their derived interac-
tionmatrices and the reconstructed 3Dmodels are available
at http://www.3DGenomes.org/datasets. Specific details on
the construction of the toy genomes and the derived models
are given in the Materials and Methods.

Overall accuracy of the generated models

To assess the accuracy of the genomic 3D models built by
TADbit, we calculated two different accuracy measures be-
tween the reconstructed models and the toy genomic struc-
tures (that is, the dRMSD and the dSCC). Both measures
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Higher-res is “good” 
put your $$ in sequencing 

Noise is “OK” 
no need to worry much 

Structural variability is ”NOT OK” 
homogenize your cell population! 

…but we can differentiate between noise and structural variability 

and we can a priori predict the accuracy of the models



But… what about direct validation of models?



Model accuracy 
Boettiger, A. N., et al. (2016). Nature, 529, 418—422.
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Model accuracy (fly@2Kb) 
Boettiger, A. N., et al. (2016). Nature, 529, 418—422.
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Model accuracy (Human Chr21@40Kb) 
Wang, S., et al. (2016). Science 353, 598—602.
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Fig. 1. Mapping the spatial organization of the central 100-kb regions of all 34 TADs in chromosome 21 (Chr21) 
of IMR90 cells. (A) A simplified scheme of the imaging approach. All primary probes are first hybridized to the 
targeted chromosome, after which secondary probes targeting each TAD are sequentially hybridized to the readout 
sequences on the primary probes, imaged, and then bleached. In each round of secondary hybridization, two different 
secondary probes tagged with dyes of different colors allowed simultaneous visualization of two TADs. More details 
are depicted in fig. S1. (B) Image of an IMR90 cell after the primary hybridization (Hyb 0) with primary probes 
targeting all TADs in Chr21. The two bright patches, one marked by a yellow box, correspond to the two copies of 
Chr21 in this diploid cell. (C) Images of the yellow-boxed region in (A) after each round of secondary hybridization 
(Hyb 1-17). (D) Positions of the 34 TADs of the chromosome were plotted as red dots overlaid on the Hyb 0 image. 
Scale bars in (B-D): 2 µm. (E) TAD positions plotted in 3D. (F) Mean spatial distance matrix for the 34 TADs, with each 
element of the matrix corresponding to the mean spatial distance between a pair of TADs. (G) Inverse Hi-C contact 
frequency between each pair of TADs versus their mean spatial distance. The correlation coefficient (R) and the slope 
of a fitted line (k) are shown. Contact frequency is calculated as the total Hi-C counts between two TADs normalized 
to their genomic lengths (8). (H) Mean spatial distance versus genomic distance for all pairs of TADs. The lines are 
power-law function fits with either a predefined scaling exponent (S = 1/3, green) or with S as a fitting parameter 
(red). Data from 120 individual chromosomes were used to generate (F-H). 
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Model accuracy (Human Chr21@40Kb)  
Wang, S., et al. (2016). Science 353(6299), 598—602.
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Fig. 2. Spatial organization of compartments in individual chromosomes of Chr21. (A) Normalized 
spatial distance matrix for the 34 TADs, normalized over the expected spatial distances determined by 
the power-law function fit in Fig. 1H (red line). (B) Pearson correlation matrix of the 34 TADs, 
determined from the normalized spatial distance matrix in (A). (C) Pearson correlation matrix of the 34 
TADs calculated from previous Hi-C data (8). (D) Assignment of TADs to compartment A (red bars) or 
compartment B (blue bars) based on a principal component analysis of the Pearson correlation matrix 
shown in (B). (E) Left panels: spatial position maps of compartment-A TADs (red) and compartment-B 
TADs (blue) in two individual chromosomes. For better visualization, the chromosomes were rotated so 
that the polarization axis connecting the centroids of compartments A and B is aligned along the z axis. 
Right panels: corresponding 3D convex hull plots. (F) Polarization index values measured for individual 
chromosomes (observed) in comparison with those derived from a randomization control where the 
compartment assignments were randomized while maintaining the total number of TADs in each 
compartment. The nonzero control values arose from fluctuations associated with the finite number of 
TADs per chromosome, which provides a baseline for comparison. Each dot corresponds to the 
polarization index of a single chromosome, the red lines represent the median values, and the blue 
boxes represent the 25% – 75% quantiles. **P < 0.001 (Wilcoxon test). Data from 120 individual 
chromosomes were used to generate (A), (B), (D), and (F). 
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