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Hi-C experiment

Llieberman-Aiden, E., et al. (2009). Science, 326(5950), 289-293.
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Mapping & Filtering

Imakaev, M. V et al. (2012). Nature Methods, Q(10), 999-1003.

Genomic coordinate

cut site 1 cut site 2
digestion
dangling R dangling L dangling R dangling L
ligation (
rejoined rejoined
contact "far" contact "down"
contact "up" contact "close"
1092000 -
category
, - contact down
read2 begin

\ fead? end @ - contact far

© 1091000 - —contact up

g —dangling L

° -dangling R

g - 0other

Cut sit g 1090000 - = random
ut site .
- rejoined
read1 end J :
- self circle
read1 begin
1089000 -
>

Genomic coordinate



Mapping & Filtering

Imakaev, M. V et al. (2012). Nature Methods, Q(10), 999-1003.
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How much you normally map?

80-90% each end => 60-80% Intersection

~1% multiple contacts

Many of intersecting pairs will be lost in filtering...
Final 40-60% of valid pairs

One measure of quality is the CIS/TRANS ration
(70-80% good)
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Interaction matrices
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Normalizing HiC data
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Fragment length

Normalizing HiC data (a la Tanay

Yaffe, E., & Tanay, A. (2011). Nature Genetics, 43(11), 1059-1065
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Normalizing HIiC data (a la Mirny)

Imakaev, M., Fudenberg, G., McCord, R. P., Naumova, N., Goloborodko, A., Lajoie, B. R., et al. (2012). Nature Methods, 9(10), 999—-1003.
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Hierarchical genome organisation
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Number of TADs
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Number of cis interactions (log )

36
35.8
356
354
35.2

35

HiCCUPS

GOTHIC

Loops

How well we do. ..

HIPPIE

HOMER

Looé
Domain

Looﬁ
Domain

Position (Mb)

Position (Mb)

(@)}
|

(9, ]
1

N

H HiCCUPS

B GOTHIC
HOMER
diffHic
HIPPIE

M Fit-Hi-C

T
7.5

T
8.5

Number of reads after filters (log )

Jaccard index

Position (Mb) Position (Mb) Position

Cis interactions

0.8 -

0.6 - o

044 ¢
-

0249 . & ° o
E E-E o ° o
\ E 3 —8— o

' —Ei- -
0.0 - !!I—I‘T';i
T

—_

Mb)

Position

(Mb)

| |
Cohesin  CTCF

True positives (% ) Interactions ( x10°%) Resolution

3C

5C

FISH ChIA-PET

0000
0 255075100 0 200 400 600  40kb 5kb
IS-|ou 1° @@ @ sexton FIlyEmbry o
tc?r):_ i @ @ @ Sexton
1+ @ ®@ - - @ Dixon2012 5
Sl{s + + o + Flin &
o e ) + +Rao =
He - @ © ® - - FRao GM12878
o 0 - @® Dixon2012 |
I o o - IDixon2015 |[i&
% c o o o e +lin E
g - @® - -+ + @ Dixon2012 S
K7 . + Flin g
. + +Rao -
e e o @ s o FRao GM12878
@ o o e rDixon2012 |y
5l ¢ ¢+« Dixon2015 |&
8 e @ o @ o o rJin T
+ o o @ <+ o FRao GM12878
1+ @ o o * rDixon2012 | Y
=) 1. + FDixon2015 |<
1 e o + @ o o Flin T
Rao o 00 @® -Rao GM12878
X
SRS
\é§“ GRS <

Forcato et al. Nat Methods. 2017 Jul: 14(7) 679-685



150

100

50

150

100

50

Comparing HiC dato

L
®
[
o @
A
¢ °
8 o° ®o
0
o 0 g@oo
o°® 0528 ® 20 o A'Q'O A
ee @ o g X
0P © 3° o &B° mu(wcfrm
0% T <y T G B 5§ A% ¢, © 5 wﬁ”‘w«“"”m‘@ E@oap A
T T T T T
—4e+05 —2e+05 0 2e+405 4e+405
Distance from viewpoint
[
o
[
o %
A ‘
4 °
®o
(o} O
®o 0
0,90 ' Qo oA.,‘o N
o & o g © 9 A
oo 8° o &s° o g2 S g il
@0 g T B 6 T LT o ° wﬁ*wm%%ow A
T T T T T
—4e405 —2e+405 0 2e+05 4e+405
Distance from viewpoint

cnag L&



T45’

T3h

20}

40}

60}

80

100 k
F

120

20}
40}
60}
80}

100}

120}

/-score differences (Dekkerlab)

TO

i
I2.5
R !

40.0

.'ﬁ
T

0.4

r .I-..I " "
s »
i
8
£l

40.0

" i
#
- {0.0
-

2 - \

~0.4
. I
-
0.4
-

- {o.0

cnag ‘i



Comparing HiC data (GOTHIC]

Mifsud, B., Tavares-Cadete, F., Young, A. N., Sugar, R., Schoenfelder, S., Ferreira, L., et al. (2015). Nature Genetics, 1-12.

@ © 2015 Nature America, Inc. All rights reserved.

ARTICLES

Mapping long-range promoter contacts in human cells
with high-resolution capture Hi-C

Borbala Mifsud!>19, Filipe Tavares-Cadete'-, Alice N Young>!0, Robert Sugar!, Stefan Schoenfelder?,
Lauren Ferreira3, Steven W Wingett*, Simon Andrews?, William Grey>, Philip A Ewels3, Bram Herman®,
Scott Happe®, Andy Higgs®, Emily LeProust®®, George A Follows’, Peter Fraser?, Nicholas M Luscombel>>8 &

Cameron S Osborne3*

Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and
target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate
these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to
examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared
and cell type-restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active
genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements
marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-
associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights

and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.

Genome organization influences transcriptional regulation by facili-
tating interactions between gene promoters and distal regulatory
elements. Many contacts have been identified using chromosome
conformation capture methodologiesl'3. For example, the ChIA-PET
(chromatin interaction analysis by paired-end tag sequencing) method
has been used to map long-range interactions extending over hundreds
of kilobases; however, these studies have only interrogated the
subset of interactions involving highly transcriptionally active genes,
whereas long-range interactions for weakly expressed and transcrip-
tionally inactive genes remain unknown. Although the 5C (chromatin
conformation capture carbon copy) method is not restricted by the
nature of interactions, thus far, it has only been applied to a few small
genomic regions. The Hi-C method simultaneously captures all
genomic interactions, which provides a population-average snapshot
of the genome conformation within a single experiment; yet, owing to
the enormous complexity of Hi-C libraries, it is costly to sequence
to sufficient depth to provide enough spatial resolution to interro-
gate specific contacts between gene promoters and distal regulatory
elements®*. To circumvent these issues, we have used solution hybrid-
ization selection, originally developed for exon sequencing’—and
recently used to capture the interactions of a few hundred promoters
from 3C libraries’—to enrich Hi-C libraries for genome-wide,
long-range contacts of both active and inactive promoters.

RESULTS

A genome-wide, long-range interaction capture assay

We prepared three HindIII-digested Hi-C libraries from GM12878
cells, a human Epstein-Barr virus (EBV)-transformed lymphoblastoid
cell line that has been comprehensively assayed in the Encyclopedia
of DNA Elements (ENCODE) Project, and two libraries from ex vivo
CD34* hematopoietic progenitor cells. One Hi-C library from each cell
type was sequenced to examine the di-tag (paired-end read) interaction
distribution and depth of read coverage (Supplementary Table 1).
As anticipated, we observed a higher density of di-tag interaction reads
between restriction fragments in cis as compared with fragments in
trans, with the highest density occurring between fragments sepa-
rated by less than 20 kb (Supplementary Fig. 1a,b). We also observed
demarcation of the genome into distinct contiguous, highly intracon-
nected topologically associated domains (TADs)? (Supplementary
Fig. 1c and Supplementary Table 2). The distribution of read cover-
age was typical for a Hi-C experiment. In our initial comparison, we
downsampled all data sets to 45 million unique sequencing reads.
Each restriction fragment was represented by an average of 143
and 139 reads in the GM12878 and CD34" libraries, respectively
(Supplementary Fig. 1d). We processed the reads using binomial sta-
tistics to identify ligation fragments that were significantly enriched
(g < 0.05). This approach recognizes ligation products between

1The Francis Crick Institute, London, UK. 2UCL Genetics Institute, University College London, London, UK. 3Nuclear Dynamics Programme, Babraham Institute,
Cambridge, UK. 4Bioinformatics Group, Babraham Institute, Cambridge, UK. Department of Medical and Molecular Genetics, King's College London School of
Medicine, London, UK. éDiagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA. 7Department of Haematology, Cambridge University
Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. 80kinawa Institute of Science and Technology, Okinawa, Japan. “Present addresses:
Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan (F.T.-C.) and Twist Bioscience, San Francisco, California, USA (E.L.). 19These authors
contributed equally to this work. Correspondence should be addressed to C.S.0. (cameron.osborne@kcl.ac.uk) or N.M.L. (nicholas.luscombe@ucl.ac.uk).

Received 5 December 2014; accepted 2 April 2015; published online 4 May 2015; doi:10.1038/ng.3286
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Comparing HiC data (CHICAGO)

Cairns, J., Freire-Pritchett, P., Wingett, S. W., Varnai, C., Dimond, A., Plagnol, V., et al. (2016). Genome Biology, 1-17.

Cairns et al. Genome Biology (2016) 17:127
DOI 10.1186/513059-016-0992-2

METHOD

Genome Biology

Open Access

CHICAGO: robust detection of DNA looping ®~
interactions in Capture Hi-C data

Jonathan Cairns'™, Paula Freire-Pritchett'”, Steven W. Wingett'? Csilla Varnai', Andrew Dimond', Vincent PlagnoF,
Daniel Zerbino®, Stefan Schoenfelder!, Biola-Maria Javierre!, Cameron Osborne®, Peter Fraser’

and Mikhail Spivakov'"

Abstract

background model, P value weighting

Capture Hi-C (CHi-C) is a method for profiling chromosomal interactions involving targeted regions of interest, such
as gene promoters, globally and at high resolution. Signal detection in CHi-C data involves a number of statistical
challenges that are not observed when using other Hi-C-like techniques. We present a background model and
algorithms for normalisation and multiple testing that are specifically adapted to CHi-C experiments. We implement
these procedures in CHICAGO (http://regulatorygenomicsgroup.org/chicago), an open-source package for robust
interaction detection in CHi-C. We validate CHICAGO by showing that promoter-interacting regions detected with
this method are enriched for regulatory features and disease-associated SNPs.

Keywords: Gene regulation, Nuclear organisation, Promoter-enhancer interactions, Capture Hi-C, Convolution

Background

Chromosome conformation capture (3C) technology has
revolutionised the analysis of nuclear organisation, lead-
ing to important insights into gene regulation [1]. While
the original 3C protocol tested interactions between a
single pair of candidate regions (“one vs one”), subse-
quent efforts focused on increasing the throughput of
this technology (4C, “one vs all”; 5C, “many vs many”),
culminating in the development of Hi-C, a method that
interrogated the whole nuclear interactome (“all vs all”)
[1, 2]. The extremely large number of possible pairwise
interactions in Hi-C samples, however, imposes limita-
tions on the realistically achievable sequencing depth at
individual interactions, leading to reduced sensitivity.
The recently developed Capture Hi-C (CHi-C) technol-
ogy uses sequence capture to enrich Hi-C material for
multiple genomic regions of interest (hereafter referred
to as “baits”), making it possible to profile the global
interaction profiles of many thousands of regions globally
(“many vs all”) and at a high resolution (Fig. 1) [3-7].

* Correspondence: mikhail spivakov@babraham.ac.uk

*Equal contributors

"Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
Full list of author information is available at the end of the article

CHi-C data possess statistical properties that set them
apart from other 3C/4C/Hi-C-like methods. First, in
contrast to traditional Hi-C or 5C, baits in CHi-C com-
prise a subset of restriction fragments, while any frag-
ment in the genome can be detected on the “other end”
of an interaction. This asymmetry of CHi-C interaction
matrices is not accounted for by the normalisation pro-
cedures developed for traditional Hi-C and 5C [8-10].
Secondly, CHi-C baits, but not other ends, have a further
source of bias associated with uneven capture efficiency.
In addition, the need for detecting interactions globally
and at a single-fragment resolution creates specific mul-
tiple testing challenges that are less pronounced with
binned Hi-C data or the more focused 4C and 5C assays,
which involve fewer interaction tests. Finally, CHi-C
designs such as Promoter CHi-C and HiCap [3-5, 11]
involve large numbers (many thousands) of spatially
dispersed baits. This presents the opportunity to in-
crease the robustness of signal detection by sharing
information across baits. Such sharing is impossible
in the analysis of 4C data that focuses on only a sin-
gle bait and is of limited use in 4C-seq containing a
small number of baits [12-14].

These distinct features of CHi-C data have prompted
us to develop a bespoke statistical model and a

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

( BioMed Central International License (http:/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Comparing HiC data (dittHiC]

Lun, A. T. L., & Smyth, G. K. (2015). BMC Bioinformatics, 1-11.

Lun and Smyth BMC Bioinformatics (2015) 16:258
DOI 10.1186/512859-015-0683-0

SOFTWARE

BMC
Bioinformatics

Open Access

diffHic: a Bioconductor package to detect ®

CrossMark

differential genomic interactions in Hi-C data

Aaron T.L. Lun'? and Gordon K. Smyth'3"

Abstract

Background: Chromatin conformation capture with high-throughput sequencing (Hi-C) is a technique that
measures the in vivo intensity of interactions between all pairs of loci in the genome. Most conventional analyses of
Hi-C data focus on the detection of statistically significant interactions. However, an alternative strategy involves
identifying significant changes in the interaction intensity (i.e, differential interactions) between two or more
biological conditions. This is more statistically rigorous and may provide more biologically relevant results.

Results: Here, we present the diffHic software package for the detection of differential interactions from Hi-C data.
diffHic provides methods for read pair alignment and processing, counting into bin pairs, filtering out low-abundance
events and normalization of trended or CNV-driven biases. It uses the statistical framework of the edgeR package to
model biological variability and to test for significant differences between conditions. Several options for the
visualization of results are also included. The use of diffHic is demonstrated with real Hi-C data sets. Performance
against existing methods is also evaluated with simulated data.

Conclusions: On real data, diffHic is able to successfully detect interactions with significant differences in intensity
between biological conditions. It also compares favourably to existing software tools on simulated data sets. These
results suggest that diffHic is a viable approach for differential analyses of Hi-C data.

Keywords: Hi-C, Genomic interaction, Differential analysis

Background

Chromatin conformation capture with high-throughput
sequencing (Hi-C) is a technique that is widely used to
study global chromatin organization in vivo [1]. Briefly,
samples of nuclear DNA are cross-linked and digested
with a restriction enzyme to release chromatin complexes
into solution (Fig. 1). Each complex may contain multi-
ple restriction fragments, corresponding to an interaction
between the associated genomic loci. After some process-
ing, proximity ligation is performed between the ends of
the restriction fragments. This favours ligation between
restriction fragments in the same complex. The ligated
DNA is sheared and purified for high-throughput paired-
end sequencing. Each sequencing fragment represents a

*Correspondence: smyth@wehi.edu.au

TThe Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade,
Parkville, VIC 3052, Melbourne, Australia

3Department of Mathematics and Statistics, The University of Melbourne,
Parkville, VIC 3010, Melbourne, Australia

Full list of author information is available at the end of the article

( ) BiolMed Central

ligation product, such that each read in the pair origi-
nates from a different genomic locus. The intensity of an
interaction between a pair of genomic loci can be quanti-
fied as the number of read pairs with one read mapped to
each locus. The output from the Hi-C procedure spans the
genome-by-genome “interaction space” whereby all pair-
wise interactions between loci can potentially be detected.
As such, careful analysis is required to draw meaningful
biological conclusions from this type of data.

Most analyses of Hi-C data have focused on iden-
tifying “significant” interactions from a single sample
[2, 3]. This is challenging because non-specific ligation
and apparent interactions can arise from a variety of unin-
teresting technical causes and rigorous analysis requires
a precise quantitative understanding of these artifacts.
Identifying biologically interesting interactions from a sin-
gle sample requires elaborate modeling of the background
signal in Hi-C experiments in order to correct for system-
atic biases due to GC content, mappability and fragment
length [3]. Such modeling inevitably involves assumptions
and approximations. Furthermore, the interaction space

©2015 Lun and Smyth. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
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Model representation and scoring
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From 3C data to spatial distances
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Optimization of the scoring function
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Model analysis: clustering and structural tfeatures
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Not just one solution
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The “Chromatin Globule” model
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ABSTRACT

Restraint-based modeling of genomes has been re-
cently explored with the advent of Chromosome Con-
formation Capture (3C-based) experiments. We pre-
viously developed a reconstruction method to re-
solve the 3D architecture of both prokaryotic and eu-
karyotic genomes using 3C-based data. These mod-
els were congruent with fluorescent imaging valida-
tion. However, the limits of such methods have not

y ically been d. Here we propose the
first evaluation of a mean-field restraint-based recon-
struction of genomes by considering diverse chro-
mosome architectures and different levels of data
noise and structural variability. The results show
that: first, current scoring functions for 3D recon-
struction correlate with the accuracy of the models;
second, reconstructed models are robust to noise
but sensitive to structural variability; third, the local
structure organization of genomes, such as Topo-
logically Associating Domains, results in more accu-
rate models; fourth, to a certain extent, the models
capture the intrinsic structural variability in the input
matrices and fifth, the accuracy of the models can be
a priori predicted by analyzing the properties of the
interaction matrices. In summary, our work provides
a systematic analysis of the limitations of a mean-
field restrain-based method, which could be taken
into consideration in further development of meth-
ods as well as their applications.

INTRODUCTION

Recent studies of the three-dimensional (3D) conforma-
tion of genomes are revealing insights into the organiza-
tion and the regulation of biological processes, such as gene

expression regulation and replication (1-6). The advent of
the so-called Chromosome Conformation Capture (3C) as-
says (7), which allowed identifying chromatin-looping inter-
actions between pairs of loci, helped deciphering some of
the key elements organizing the genomes. High-throughput
derivations of genome-wide 3C-based assays were estab-
lished with Hi-C technologies (8) for an unbiased identifi-
cation of chromatin interactions. The resulting genome in-
teraction matrices from Hi-C experiments have been exten-
sively used for computationally analyzing the organization
of genomes and genomic domains (5). In particular, a sig-
nificant number of new approaches for modeling the 3D or-
ganization of genomes have recently flourished (9-14). The
main goal of such approaches is to provide an accurate 3D
representation of the bi-dimensional interaction matrices,
which can then be more easily explored to extract biolog-
ical insights. One type of methods for building 3D models
from interaction matrices relies on the existence of a limited
number of conformational states in the cell. Such methods
are regarded as mean-field approaches and are able to cap-
ture, to a certain degree, the structural variability around
these mean structures (15).

We recently developed a mean-field method for model-
ing 3D structures of genomes and genomic domains based
on 3C interaction data (9). Our approach, called TADDit,
was developed around the Integrative Modeling Platform
(IMP, http://integrativemodeing.org), a general framework
for restraint-based modeling of 3D bio-molecular struc-
tures (16). Briefly, our method uses chromatin interaction
frequencies derived from experiments as a proxy of spatial
proximity between the ligation products of the 3C libraries.
Two fragments of DNA that interact with high frequency
are dynamically placed close in space in our models while
two fragments that do not interact as often will be kept
apart. Our method has been successfully applied to model
the structures of genomes and genomic domains in eukary-
ote and prokaryote organisms (17-19). In all of our studies,
the final models were partially validated by assessing their
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Model building by TADDbit Matrix generation
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Reconstructing toy models
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Structural vormbﬂlfy is "NOT OK”
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Can we predict the accuracy of the models?
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MMP score

Can we predict the accuracy of the models@

MMP = —0.0002 % Size 4+ 0.0335 x SK — 0.0229x
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...but we can difterentiate between noise and structural variability

and we can a priori predict the accuracy of the models



But... what about direct validation of models?



Marker enrichment

Model accuracy

Boettiger, A. N., et al. (2016). Nature, 529, 418-422.
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Model accuracy (Human Chr21@40Kb)

Wang, S., etal. (2016). Science 353, 598-602.
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Model Aaccuracy (Human Chr2 1@40Kb)
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