

3D structural dynamics of the SOX2 locus activation

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

Marco di Stefano CNAG-CRG

Ralph St CRG

Ralph Stadhouders, Enrique Vidal & Thomas Graf

Transcription factors dictate cell fate

Graf & Enver (2009) Nature

Transcription factors (TFs) determine cell identity through gene regulation Normal 'forward' differentiation

Transdifferentiation or reprogramming

Cell fates can be converted by enforced TF expression

Interplay: topology, gene expression & chromatin

Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Reprogramming from B to PSC Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Hi-C maps of reprogramming from B to PSC The SOX2 locus

50 100 150 200 250

B cell

50 100 150 200 250

Hi-C maps of reprogramming from B to PSC The SOX2 locus

How does these structural rearrangements interplay with the transcription activity?

What are the main drivers of structural transitions?

Optimal IMP parameters lowfreq=0, upfreq=1, maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)

TADbit modeling of SOX2 from B cells Hi-C

Models of reprogramming from B to PSC The SOX2 locus

TADdyn. Dynamics of chromatin

Chain-connectivity interaction Bending **Lennard-Jones Potential**

Marco Di Stefano

$$+ U_{br}(i, i + 1, i + 2) + \sum_{j=i+1}^{N} U_{LJ}(i, j)$$

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

Transition	Stable	Vanishing	Raising
Β -> Β α	18,612	6,984	7,290
Β α -> D2	18,512	7,390	6,687
D2 -> D4	18,369	6,830	6,893
D4 -> D6	18,971	6,291	7,289
D6 -> D8	20,167	6,093	6,250
D8 -> ES	20,679	5,738	6,173

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

Transcription affects the 3D topology of the enhancer-promoted enhancing its temporal stability and is associated with further spatial compaction.

locus recored before -E2 and after +E2 activation.

Germier ,T., et al, (2017) Blophys J.

Two dimensional trajectories and area

explored over 50s of the CCND1

Chen ,T., et al, (2018) Nat. Genetics

TITLE: Live-Cell Imaging Reveals Enhancer-dependent Sox2 Transcription in the Absence of Enhancer Proximity

AUTHOR NAMES AND AFFILIATIONS: Jeffrey M. Alexander¹, Juan Guan², Bo Huang^{2,3,4}, Stavros Lomvardas^{5,6}, Orion D. Weiner^{1,3*}

Red-OFF
 Red-ON
 λ control

A "cage" model for transcriptional activation

