



# MC-DNA and Chromatin Dynamics

**Multiscale Complex Genomics** 

## Jürgen Walther – 21.09.2018



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676556.





# 1) Introduction into DNA simulations

# 2) DNA model – "MC DNA"

# 3) Chromatin model – "Chromatin Dynamics"



















# Biomolecular simulations: A multi-scale problem



# Biomolecular simulations: A multi-scale problem



DNA is not only among the most important molecules in life, but a meeting point for biology, physics and chemistry, being studied by numerous techniques. Theoretical methods can help in gaining a detailed understanding of DNA structure and function, but their practical use is hampered by the multiscale nature of this molecule. In this regard, the study of DNA covers a broad range of different topics, from sub-Angstrom details of the electronic distributions of nucleobases, to the mechanical properties of millimeter-long chromatin fibers. Some of the biological processes involving DNA occur in femtoseconds, while others require years. In this review, we describe the most recent theoretical methods that have been considered to study DNA, from the electron to the chromosome, enriching our knowledge on this fascinating molecule.

#### Addresses

<sup>1</sup> Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain

<sup>2</sup> Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain

<sup>3</sup>Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain

Corresponding author: Orozco, Modesto (modesto.orozco@irbbarcelona.org) in the day time-scale  $(10^5 \text{ s})$ ; the local breathing of nucleobases occurs in the millisecond range  $(10^{-3} \text{ s})$ , while electronic rearrangements take place in the sub-femtosecond time-scale  $(<10^{-15} \text{ s})$ .

During the last years we have witnessed the development of a wide repertoire of theoretical methods that aimed to reproduce the properties of DNA, either isolated or protein bound. Even if primitive, these methods allow researchers to consider the DNA at different resolution levels, and provide information of great value on the structure, dynamics, and interactions of this fascinating molecule. We will briefly summarize some of these most recent theoretical approaches, focusing our analysis on the contributions of the last three years, when the field has experienced a significant improvement.

For the sake of simplicity, throughout this manuscript we will classify theoretical methods in four groups, according to their level of resolution (Figure 1): firstly, electronic, secondly, atomistic, thirdly, coarse grained, and lastly, mesoscopic. It is worth noting that moving in the resolution space means moving also in the methodological space since the basic physical models underlying the

#### Multiscale simulation of DNA (2016) PD Dans, J Walther, H Gómez, M Orozco Current opinion in structural biology 37, 29-45

#### Molecular Modeling of Nucleic Acids (2017)

H Gómez, J Walther, L.Darré, I Ivani, PD Dans,

**M Orozco.** In Computational Tools for Chemical Biology. RSC, ISBN: 1782627006



# Calculation time: coarse-grained DNA (MC) vs atomistic DNA (MD) simulations



Time





**Multiscale Complex Genomics** 

# A fast method to accurately probe DNA properties at base-pair level



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676556.





## https://mmb.irbbarcelona.org/MCDNA/





1

## https://mmb.irbbarcelona.org/MCDNA/

|              | 1. 💶 Spain           |
|--------------|----------------------|
|              | 2. 🔤 United States   |
| 117 usors    | 3. 🚟 United Kingdom  |
| 14/ USEIS    | 4. 🔚 India           |
| engaged in   | 5. 🖸 Switzerland     |
| engagea m    | 6. 🔳 Germany         |
| 279 sessions | 7. <b>III</b> France |
|              | 8. 🚍 Netherlands     |
|              | 9 💻 Russia           |

|    | Country            | Users | % Users |
|----|--------------------|-------|---------|
| 1. | Spain              | 91    | 50.56%  |
| 2. | United States      | 31    | 17.22%  |
| 3. | Sea United Kingdom | 11    | 6.11%   |
| 4. | India              | 8     | 4.44%   |
| 5. | Switzerland        | 7     | 3.89%   |
| 6. | Germany            | 4     | 2.22%   |
| 7. | France             | 4     | 2.22%   |
| 8. | Netherlands        | 3     | 1.67%   |
| 9. | Russia             | 3     | 1.67%   |
| 10 | . 🔚 Sweden         | 3     | 1.67%   |
|    |                    |       |         |



145 views of webinar



Dynamics of free linear DNA (MC\_DNA)



#### Accessibility of a protein-coated DNA fiber (MC\_DNA + proteins)



Distant contacts in a constrained environment (circular MC\_DNA)



### MCDNA: MonteCarlo Coarse-Grained Simulations.





## https://mmb.irbbarcelona.org/MCDNA/



## Particle-based

## Internal space-based







Martini

SIRAH

1 bead backbone 2 beads sugar 3 beads Y 4 beads R (6/7 total).

2 beads backbone1 bead sugar3 beads base(6 total)

Bases or base pairs are rigid objects and behave based on coordinates in an internal conformational space



## From Cartesian to Helical space



#### Obtaining the force constants from the covariance matrix in the helical space

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11163–11168, September 1998 Biophysics

# DNA sequence-dependent deformability deduced from protein–DNA crystal complexes

WILMA K. OLSON\*<sup>†</sup>, ANDREY A. GORIN<sup>‡</sup>, XIANG-JUN LU<sup>\*</sup>, LYNETTE M. HOCK<sup>\*</sup>, AND VICTOR B. ZHURKIN<sup>†</sup>§

\*Department of Chemistry, Rutgers University, New Brunswick, NJ 08903; \*Sloan-Kettering Cancer Center, New York, NY 10021; and <sup>§</sup>National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

Communicated by Donald M. Crothers, Yale University, New Haven, CT, June 30, 1998 (received for review April 13, 1998)

$$\mathbf{K}^{\mathbf{i}} = k_{\mathrm{B}}TC_{\mathrm{h}}^{-1} = \begin{bmatrix} k_{\mathrm{twist}} & k_{t-r} & k_{t-l} & k_{t-l} & k_{t-s} & k_{t-d} \\ k_{t-r} & k_{\mathrm{roll}} & k_{r-l} & k_{r-i} & k_{r-s} & k_{r-d} \\ k_{t-l} & k_{r-l} & k_{tilt} & k_{l-i} & k_{l-s} & k_{l-d} \\ k_{t-i} & k_{r-i} & k_{l-i} & k_{\mathrm{rise}} & k_{i-s} & k_{i-d} \\ k_{t-s} & k_{r-s} & k_{l-s} & k_{i-s} & k_{\mathrm{shift}} & k_{s-d} \\ k_{t-d} & k_{r-d} & k_{l-d} & k_{i-d} & k_{s-d} & k_{\mathrm{slide}} \end{bmatrix}$$

$$\mathbf{E}_{el}^{i} = \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{0}\right)^{\mathrm{T}} \mathbf{K}^{i} \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{0}\right) \qquad \mathbf{x}_{i} \in \mathbb{R}^{6}, \mathbf{K}_{i} \in \mathbb{R}^{6 \times 6}$$

## DNA is a spiral staircase - each step a base-pair



## MC\_DNA - The method: next-nearest neighbor model



Equilibrium structure built with x<sup>0</sup>

Sequence-specific effects (NN model) included in elastic force constants K

## MC\_DNA - The method

![](_page_19_Figure_1.jpeg)

## Validation by comparison with all atom MD

![](_page_20_Figure_1.jpeg)

Bending of 10bp pieces

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

## Inferring phosphate position from helical parameters

![](_page_21_Figure_1.jpeg)

## Major and minor groove width

8 MC ind MC ind MC bsc1 K miniabc MC bsc1 K miniabc MD MD 16 10 14 œ Minor groove width (A) 6 Major groove width (A) 10 12 æ 9 2 4 40 50 20 40 50 Ó 10 20 30 Ó 10 30 bp bp

Minor groove

Major groove

CGCCGGCAGTAGCCGAAAAAATAGGCGCGCGCGCTCAAAAAATGCCCCATGCCGCGC

CGCCGGCAGTAGCCGAAAAAATAGGCGCGCGCGCTCAAAAAATGCCCCATGCCGCGC

## Creating kinetic series of the simulation

![](_page_23_Picture_1.jpeg)

![](_page_24_Picture_0.jpeg)

Workflow

## *Input*: DNA sequence in txt file (f.ex: ACGTGCTAATCGCGCGCGTATCTAGCTA)

#### <u>*Create Structure*</u>: Creates a single structure of DNA in a relaxed state

<u>*Create Trajectory*</u>: Creates a certain number of DNA structures

![](_page_25_Picture_0.jpeg)

User case

#### **Genomic region**

chrll:489181..491246

(Gene TPS1 with its promoter region)

- Visualize genomic region with outputs from Nucleosome Dynamics in Jbrowse
- Select sequence to simulate

## MC-DNA\_noNucl MC-DNA\_nucl

![](_page_26_Picture_1.jpeg)

#### User case

#### chrll:489181..491246

![](_page_26_Figure_4.jpeg)

seq\_nucl.txt

seq\_no\_nucl.txt

# Combining results for trajectory for seq\_nucl.txt and seq\_no\_nucl.txt (not part of the VRE)

![](_page_27_Figure_1.jpeg)

Bending distribution of DNA fiber

Bending (in deg)

![](_page_27_Figure_3.jpeg)

Bending along DNA Fiber

![](_page_28_Picture_0.jpeg)

## Workflow

| Virtual<br>Research<br>Environment | = |            |                            |         |                           |                  |          |                 | 🔟 Test 🗸          |
|------------------------------------|---|------------|----------------------------|---------|---------------------------|------------------|----------|-----------------|-------------------|
|                                    |   | - Anna - A | chromdyn_str.pdb 🛇         | PDB     | workshop_chromdyn_50m_12N | 2017/03/31 15:05 | 177.34 K | Tools ~         | Actions ~         |
| ✿ Homepage                         |   |            | workshop_chromdyn_gff_G2 O |         | workshop_chromdyn_gff_G2  | 2017/04/01 16:40 | 177.65 K |                 | Actions 🛩         |
| User Workspace                     |   |            | chromdyn_str.pdb 오         | PDB     | workshop_chromdyn_gff_G2  | 2017/04/01 16:40 | 149.50 K | Tools ~         | Actions ~         |
| 🗘 Get Data                         | < |            | workshop_chromdyn_gff_M 오  |         | workshop_chromdyn_gff_M   | 2017/04/01 16:30 | 172.18 K |                 | Actions ~         |
| 🔗 External Links                   |   |            | chromdyn_str.pdb 오         | PDB     | workshop_chromdyn_gff_M   | 2017/04/01 16:30 | 148.39 K | Tools 🗸         | Actions ~         |
| ₿ Forum                            |   |            | workshop_mc-dna_no_nucl 🛇  |         | workshop_mc-dna_no_nucl   | 2017/03/31 17:05 | 145.45 M |                 | Actions ~         |
| Ω User                             |   |            | mc_dna_eq_str.pdb 🛇        | PDB     | workshop_mc-dna_no_nucl   | 2017/03/31 16:56 | 625.32 K | Tools ~         | Actions ~         |
| Admin                              |   |            | mc_dna_str.dcd 🛇           | MDCRD   | workshop_mc-dna_no_nucl   | 2017/03/31 17:05 | 54.70 M  |                 | Actions ~         |
| NG AGININ                          |   |            | mc_dna_str.pdb 🛇           | PDB     | workshop_mc-dna_no_nucl   | 2017/03/31 17:05 | 625.32 K | Tools ~         | Actions ~         |
| This is a BETA version of MUG      |   |            | mc_dna_str.top 🛇           | PARMTOP | workshop_mc-dna_no_nucl   | 2017/03/31 17:05 | 3.62 M   |                 | Actions ~         |
|                                    |   |            | workshop_mc-dna_nucl 🛇     |         | workshop_mc-dna_nucl      | 2017/03/31 17:06 | 146.39 M |                 | Actions ~         |
|                                    |   |            | mc_dna_eq_str.pdb 🛇        | PDB     | workshop_mc-dna_nucl      | 2017/03/31 16:56 | 627.48 K | Tools ~         | Actions ~         |
|                                    |   |            | mc_dna_str.dcd 🛇           | MDCRD   | workshop_mc-dna_nucl      | 2017/03/31 17:05 | 54.89 M  | 백 MD E          | Energy Refinement |
|                                    |   |            | mc_dna_str.pdb 🛇           | PDB     | workshop_mc-dna_nucl      | 2017/03/31 17:05 | 627.48 K | X NAFI          | ex                |
|                                    |   |            | mc_dna_str.top 🛇           | PARMTOP | workshop_mc-dna_nucl      | 2017/03/31 17:05 | 3.63 M   | <b>å</b> ⊷ pyDo | ck DNA            |
|                                    |   | Chauda - 2 | 1 to 277 of 277 octoine    |         |                           |                  |          |                 |                   |
|                                    |   | Showing 2  | to 1 to 2// of 2// entries |         |                           |                  | < 10     | 11 12           | 13 14             |

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

Multiscale Complex Genomics

## Implementing nucleosomes into MC DNA

![](_page_30_Picture_4.jpeg)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676556.

![](_page_30_Picture_6.jpeg)

# Chromatin – a 30nm fiber?

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

# Does the 30-nm fibre exist in vivo?

### In-vitro

P.J. Robinson et al. PNAS (2006)

*Cryo-EM of regular artificial chromatin fibers* 

![](_page_32_Picture_4.jpeg)

T. Schalch et al. Nature (2005)

X-ray structure of tetranucleosome

"The precise spontaneous secondary structure of chromatin depends on the cell type and other internal and external factors, and is still under debate." (Özer et al. Curr Opin

Struct Biol (2015))

![](_page_32_Picture_9.jpeg)

נוווטוווענווו זוטבוג שונוו עוזןבובווג ואהב

#### In-vivo

J. Dubochet, N. Sartori Blanc. Micron (2001) C. Bouchet-Marquis et al. Histochem Cell Biol (2006) J. Dekker. J Biol Chem (2008) TH. Hsieh et al. Cell (2015) Ricci et al. Cell (2015)

cryo-EM cryo-EM 3C in yeast micro-C in yeast STORM

No regular 30nm fiber visible

![](_page_33_Figure_0.jpeg)

Bruce Alberts, Molecular Biology of the cell

## **Bottom-up models**

![](_page_34_Figure_1.jpeg)

Kimura et al. J Biochem. 2013

6bp / bead

![](_page_34_Figure_4.jpeg)

Jost et al., NAR. 2014

![](_page_35_Figure_0.jpeg)

## From DNA to chromatin

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

## Linker DNA at bp-level with helical coordinates

![](_page_37_Picture_1.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_39_Figure_0.jpeg)

## Generate chromatin structure (0 – many kb)

- Variable linker length
- Variable linker sequence

![](_page_40_Picture_3.jpeg)

## Validation: Salt-dependence of chromatin compaction

Sedimentation coefficient of nucleosomes

$$S = S_1 \left( 1 + \frac{2R}{N} \sum_{i}^{N} \sum_{j>i}^{N} \frac{1}{R_{ij}} \right)$$

![](_page_41_Picture_3.jpeg)

Experimental structure: 12 nucleosomes with 62 bp of linker DNA

![](_page_41_Figure_5.jpeg)

Analysis of chromatin fiber

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

**Possible applications** 

![](_page_43_Picture_1.jpeg)

#### Nucleosome positions and linker DNA are based on ...

![](_page_43_Figure_3.jpeg)

![](_page_43_Picture_4.jpeg)

# Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C

Tsung-Han S. Hsieh,<sup>1</sup> Assaf Weiner,<sup>2,3</sup> Bryan Lajoie,<sup>1,4</sup> Job Dekker,<sup>1,4</sup> Nir Friedman,<sup>2,3</sup> and Oliver J. Rando<sup>1,\*</sup> <sup>1</sup>Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA <sup>2</sup>School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel <sup>3</sup>Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel <sup>4</sup>Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA \*Correspondence: oliver.rando@umassmed.edu http://dx.doi.org/10.1016/j.cell.2015.05.048

![](_page_44_Figure_2.jpeg)

![](_page_44_Figure_3.jpeg)

- Self-associating domains 1-5 genes (ca. 2-10kb)
- Boundaries of self-associating domains enriched in nucleosome-depleted regions
- Support for a common local motif of zig-zag arrangement of nucleosomes

## **Creating yeast-like nucleosome arrangements**

Average linker length between nucleosomes:Average length of nucleosome free region (NFR):Average size self-associating domains (SAD):

20bp 100bp ≈ 5kb (= 30n)

![](_page_45_Figure_3.jpeg)

#### **Creating yeast-like nucleosome arrangements**

![](_page_46_Figure_1.jpeg)

![](_page_47_Picture_0.jpeg)

## Workflow (1)

### *Input*: - DNA linker sequence in txt file (f.ex: ACGTGCTAATCGCGCGCGTATCTAGCTA)

- Positions of nucleosomes along linker sequence in txt file (f.ex. 5 15 23)

![](_page_47_Picture_4.jpeg)

<u>Create Structure</u>: Creates a single structure of chromatin with straight linker DNA

<u>Create Trajectory</u>: Creates a certain number of simulated chromatin structures (only if the 3D structure with straight linker DNA is not overlapping)

![](_page_48_Picture_0.jpeg)

## Workflow (1)

![](_page_48_Figure_2.jpeg)

**Contour length**: length of the fiber axis

End-to-end distance: distance between first and last nucleosome of the fiber

Packing ratio: number of nucleosomes per 11nm of fiber length (relative to the fiber axis)

Fiber diameter: thickness of the fiber (average distance of a nucleosome to the fiber axis)

**Radius of gyration**: Volume occupancy of the fiber calculated with the positions of the geometric center of the nucleosomes

![](_page_49_Picture_0.jpeg)

## Workflow (1)

## chromDyn\_40m\_12N chromDyn\_50m\_12N

#### chrll:489181..491246

![](_page_49_Figure_4.jpeg)

Determine nucleosome positions according to NucleR results manually (non-overlapping in 3D space) -> G2 like -> M like

#### **3D structure**

#### **Distance matrix**

#### Internucleosomal distance

![](_page_50_Figure_3.jpeg)

#### **Ensemble averaged results:**

#### **Distance matrix**

#### Internucleosomal distance

![](_page_51_Figure_3.jpeg)

Distance (in # of nucleosomes)

![](_page_52_Picture_0.jpeg)

## Workflow (2)

#### *Input*: - Nucleosome positions computed by NucleR (in the workspace: NR\_xxx.gff)

![](_page_52_Figure_3.jpeg)

- Genomic region (chrII:489181..491246)

<u>Create Structure</u>: Creates a single structure of chromatin with straight linker DNA

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_1.jpeg)

| leosome_Dynamics_to_Chromatin_Dynamics ption e a short description here omatin Dynamics from NucleR nputs             |                                                               |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| leosome_Dynamics_to_Chromatin_Dynamics<br>ption<br>e a short description here<br>omatin Dynamics from NucleR<br>hputs |                                                               |
| ption e a short description here omatin Dynamics from NucleR                                                          |                                                               |
| e a short description here<br>omatin Dynamics from NucleR<br>nputs                                                    |                                                               |
| omatin Dynamics from NucleR<br>nputs                                                                                  |                                                               |
| omatin Dynamics from NucleR<br>nputs                                                                                  |                                                               |
| omatin Dynamics from NucleR                                                                                           |                                                               |
| omatin Dynamics from NucleR                                                                                           |                                                               |
| omatin Dynamics from NucleR                                                                                           |                                                               |
| R output ()<br>pads / NR_M_chrII.gff •                                                                                |                                                               |
| 19 <sup></sup>                                                                                                        |                                                               |
| te 3D Structure                                                                                                       | sD structure from Nucleosome Dynamics @<br>chril:489181491246 |
| 1                                                                                                                     | igs<br>ions ⑦<br><mark>ie 3D Structure</mark>                 |

![](_page_54_Picture_0.jpeg)

![](_page_54_Picture_1.jpeg)

![](_page_54_Picture_2.jpeg)

![](_page_54_Picture_3.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_55_Picture_1.jpeg)

#### chrll:489181..491246

![](_page_55_Figure_3.jpeg)

chromDyn\_G2 chromDyn\_M

#### **3D structure**

#### **Distance matrix**

#### Internucleosomal distance

![](_page_56_Figure_3.jpeg)

![](_page_56_Figure_4.jpeg)

![](_page_56_Picture_5.jpeg)

![](_page_56_Figure_6.jpeg)

**G2** 

Μ

![](_page_57_Picture_0.jpeg)

## Thank you juergen.walther@irbbarcelona.org

![](_page_57_Picture_2.jpeg)

www.multiscalegenomics.eu

![](_page_57_Picture_4.jpeg)

irbinfo.mug@irbbarcelona.org

![](_page_57_Picture_6.jpeg)

@MuG\_genomics

![](_page_57_Picture_8.jpeg)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676556.

# Acknowledgements

![](_page_58_Picture_1.jpeg)

#### Modesto Orozco

![](_page_58_Picture_3.jpeg)

#### Pablo Dans

## Collaborators

Marco Pasi (University of Nottingham)

Richard Lavery (IBCP Lyon)

John Maddocks (EPFL)

![](_page_58_Picture_9.jpeg)

![](_page_58_Picture_10.jpeg)

Jose Lluís Gelpí, Felipe Cano, Víctor López, Federica Battistini, Ricard Illa, Diana Buitrago, Manuel Sarmiento, Genis Bayarri, Laia Codo, Adam Hospital

mmb

![](_page_58_Picture_12.jpeg)

#### European Union, H2020, MuG: 676556

![](_page_58_Picture_14.jpeg)

#### Molecular Modelling & Bioinformatics Group

## **MuG Team**

![](_page_59_Picture_1.jpeg)