

Chromatin and 3C approaches

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

Complex genome organization

Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290–299 (2013).

Chromosome Conformation Capture

ARTICLE

Single-cell Hi-C reveals cell-to-cell variability in chromosome structure

 $Takashi\ Nagano^{1*},\ Yaniv\ Lubling^{2*},\ Tim\ J.\ Stevens^{3*},\ Stefan\ Schoenfelder^{1},\ Eitan\ Yaffe^{2},\ Wendy\ Dean^{4},\ Ernest\ D.\ Laue^{3},\ Amos\ Tanay^{2}\ \&\ Peter\ Fraser^{1}$

Capturing pairwise and multi-way chromosomal conformations using chromosomal walks

Pedro Olivares-Chauvet¹, Zohar Mukamel¹, Aviezer Lifshitz¹, Omer Schwartzman¹, Noa Oded Elkayam¹, Yaniv Lubling¹, Gintaras Deikus², Robert P. Sebra² & Amos Tanay¹

Enhancer hubs and loop collisions identified from single-allele topologies

Amin Allahyar^{1,2,7}, Carlo Vermeulen^{3,7}, Britta A. M. Bouwman³, Peter H. L. Krijger³, Marjon J. A. M. Verstegen³, Geert Geeven³, Melissa van Kranenburg³, Mark Pieterse³, Roy Straver⁹, Judith H. I. Haarhuis⁴, Kees Jalink⁵, Hans Teunissen⁶, Ivo J. Renkens¹, Wigard P. Kloosterman¹, Benjamin D. Rowland⁴, Elzo de Wit 06, Jeroen de Ridder 01* and Wouter de Laat3*

Cell

Resource

Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus

Chromatin conformation analysis of primary patient tissue using a low input Hi-C method

Noelia Díaz 1, Kai Kruse 1, Tabea Erdmann2, Annette M. Staiger 3,4,5, German Ott3, Georg Lenz &

Compartment-dependent chromatin interaction dynamics revealed by liquid chromatin Hi-C

Houda Belaghzal^{1*}, Tyler Borrman^{2*}, Andrew D. Stephens³, Denis L. Lafontaine¹, Sergey V. Venev¹, Zhiping Weng², John F. Marko^{3,4}, Job Dekker^{1, 5, 6 #}

Chromosome Conformation Capture

Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306–1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293.

Hierarchical genome organisation

Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293. Rao, S. S. P., et al. (2014). Cell, 1–29.

A/B Compartment Chromosome 14

TADs Chromosome 14

TADs are functional units

Hnisz, D., et al. (2016). Science

TADs are functional units

Figure adapted from Hui Zheng and Wei Xie. Nature Reviews Molecular Cell Biology (2019)

Lupianez, D. G. et al. Cell 161, 1012-1025 (2015)

Flavahan, W. A. et al. Nature 529, 110–114 (2016).

TADs are functional units

Despang, et al. (2019). Nature Genetics 51,1263-1271 (2019)

Loop-extrusion as a TAD forming mechanism

Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., & Mirny, L. A. (2018). Cold Spring Harb Symp Quant Biol 2017. 82: 45-55

Hi-C for de-novo assembly

Kaplan, N., & Dekker, J. (2013). Nature Biotechnology, 31(12), 1143–1147.

Assembly error detection Chromosome 8 Gorilla

Chr 7

Chr 12

GGO8 has an inversion of the region corresponding to HSA8:30.0-86.9Mb Aylwyn Scally (Department of Genetics, University of Cambridge)

Hi-C for meta genomics

Beitel, C. W., Froenicke, L., Lang, J. M., Korf, I. F., Michelmore, R. W., Eisen, J. A., & Darling, A. E. (2014). Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. doi:10.7287/peerj.preprints.260v1

Romain Koszul

