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From chromatin to chromatin domains. The high degree of struc-
tural and functional organization of genomic chromatin extends to 
the subchromosomal level. Recent years have seen the generation of 
detailed maps of the distribution of various chromatin-binding pro-
teins, histone marks and DNA methylation in different species and 
cell types. Perhaps one of the most interesting observations from these 
efforts is that chromosome territories are not generated by homo-
geneous folding of the underlying chromatin but instead comprise 
discrete chromatin domains (Fig. 1). The domain size depends on 
the chromosomal region, the cell type and the species, spanning few 
tens of kilobases to several megabases (averaging ~100 kb in flies and 
~1 Mb in humans)10–16.

Various studies report somewhat different classifications of chro-
matin types, mostly depending on the parameters used in the compu-
tational analysis, but the general consensus is that there are only a few 
types of repressive chromatin. The repressive domains are Polycomb-
bound euchromatin, heterochromatin and a chromatin state that has 
no strong enrichment for any of the specific factors or marks used 
for mapping11,12,14. In contrast, there are various types of active or 
open chromatin, and it has proven more difficult to rigorously classify 
them, probably because the classification depends on the number of 
factors that are used for mapping. However, at least four types of open 

chromatin can be distinguished with some certainty, encompassing 
‘enhancers’, ‘promoters’, ‘transcribed regions’ and ‘regions bound by 
chromatin insulator proteins’15.

An important feature of chromatin domains is that not all genes 
within the domain have the same transcriptional response. Some open 
chromatin domains may contain nontranscribed genes and some 
repressive domains may encompass transcribed regions, suggesting 
that chromatin domains can accommodate a certain degree of indi-
vidual gene regulatory freedom16,17. Nevertheless, the overall gestalt 
of a given chromatin domain exerts its influence, as demonstrated by 
the fact that insertion of transgenes in different chromatin domains 
affects expression of a reporter gene. Therefore, domains build more 
or less favorable chromatin environments for gene expression but do 
not fully determine gene activity17.

Topologically associated domains. Recent investigations of the  
3D folding of the fly, mouse and human genomes generalized the 
concept of chromatin domains and revealed that domains, as 
mapped by epigenome profiling, correspond to physical genome 
domains18–21. These topologically associated domains are character-
ized by sharp boundaries that correspond to binding sites for CTCF 
and other chromatin insulator–binding proteins as well as to active 

Figure 1 A global view of the cell nucleus. 
Chromatin domain folding is determined by 
transcriptional activity of genome regions. 
Boundaries form at the interface of active and 
inactive parts of the genome. Higher-order domains 
of similar activity status cluster to form chromatin 
domains, which assemble into chromosome 
territories. Repressive regions of chromosomes 
tend to contact other repressive regions on the 
same chromosome arm, whereas active domains 
are more exposed on the outside of chromosome 
territories and have a higher chance of contacting 
active domains on the other chromosome arm 
and on other chromosomes19,20, giving rise to 
topological ‘superdomains’ composed of multiple, 
functionally similar genome domains. The location 
of territories is constrained by their association with 
the nuclear periphery, transcription hubs, nuclear 
bodies and centromere clusters.

Genome organization undergoes dramatic changes during differentiation and development. Effects of genome organization are particularly prominent in embryonic 
stem (ES) cells. The genome landscape of ES cells is unique in that it is characterized by an abundance of active chromatin marks and reduced levels of repres-
sive ones117,118. ES cells have less compacted heterochromatin domains, and their centromeric regions are decondensed117,119,120. DNase hypersensitivity 
analysis suggests globally more accessible and open chromatin. The altered chromatin architecture is accompanied by a loss of binding of several architectural 
chromatin proteins, including heterochromatin protein HP1 and high-mobility group (HMG) proteins117, and increased amounts of chromatin remodelers and 
modifiers121,122. As ES cells differentiate, many of ES cell–specific chromatin hallmarks rapidly disappear. Roughly the reverse processes occur during reprogram-
ming of differentiated cells into induced pluripotent stem cells123. These observations point to a model in which chromatin structure is essential in establishing 
pluripotency by maintaining the genome in an open, readily accessible state, allowing for maximum plasticity.

In mouse embryogenesis, the maternal and paternal pronuclei are not symmetric: the paternal pronucleus lacks typical heterochromatin marks but contains 
Polycomb proteins that are absent from the maternal heterochromatin124. In Drosophila melanogaster, the cell cycle slows down as differentiation processes 
unfold during developmental progression. This is accompanied by a general decrease in nuclear volume, a progressive condensation of chromatin and a decrease 
in chromatin motion33. A strong reduction of Polycomb-dependent chromatin motion, concomitant with an increase in the residence time of Polycomb proteins on 
their target chromatin, parallels developmental progression, suggesting that a decrease in chromatin dynamics is required to stabilize gene silencing33, a process 
reminiscent of what happens during ES cell differentiation. More direct evidence for a role of three-dimensional chromosome organization in the developmental 
regulation of gene expression comes from studies in Caenorhabditis elegans, where movement of tissue-specific genes in the nuclear interior that is developmen-
tally programmed and is dependent on histone methyltransferases MET-2 and SET-35 has been described82,125.
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Capturing pairwise and multi-way chromosomal 
conformations using chromosomal walks
Pedro Olivares-Chauvet1, Zohar Mukamel1, Aviezer Lifshitz1, Omer Schwartzman1, Noa Oded Elkayam1, Yaniv Lubling1, 
Gintaras Deikus2, Robert P. Sebra2 & Amos Tanay1

Chromosomes are folded into highly compacted structures to 
accommodate physical constraints within nuclei and to regulate 
access to genomic information1,2. Recently, global mapping of 
pairwise contacts showed that loops anchoring topological domains 
(TADs) are highly conserved between cell types and species3–8. 
Whether pairwise loops9–14 synergize to form higher-order 
structures is still unclear. Here we develop a conformation capture 
assay to study higher-order organization using chromosomal 
walks (C-walks) that link multiple genomic loci together into 
proximity chains in human and mouse cells. This approach captures 
chromosomal structure at varying scales. Inter-chromosomal 
contacts constitute only 7–10% of the pairs and are restricted 
by interfacing TADs. About half of the C-walks stay within one 
chromosome, and almost half of those are restricted to intra-
TAD spaces. C-walks that couple 2–4 TADs indicate stochastic 
associations between transcriptionally active, early replicating 
loci. Targeted analysis of thousands of 3-walks anchored at 
highly expressed genes support pairwise, rather than hub-like, 
chromosomal topology at active loci. Polycomb-repressed Hox 
domains are shown by the same approach to enrich for synergistic 
hubs. Together, the data indicate that chromosomal territories, 
TADs, and intra-TAD loops are primarily driven by nested, possibly 
dynamic, pairwise contacts.

When chromatin is fixed, digested with frequent cutters (such as 
DpnII) and re-ligated, high-molecular-weight DNA products can be 
purified, representing concatenation of 30–60 DNA fragments with a 
total length of 10,000–20,000 base pairs (bp) (Fig. 1a). Such products 
are likely to represent spatial proximity between multiple loci that were 
captured at the time of fixation. Nevertheless, the multi-way proximity 
relations emerging from such products have so far been studied pri-
marily by profiling pairwise ligation contacts, using techniques such 
as circularized chromosome conformation capture (4C), chromatin 
interaction analysis by paired-end tag sequencing (ChiA-PET) or Hi-C. 
To enable a more comprehensive analysis of multi-way chromosomal 
proximities, we developed a technique involving the generation and 
selection of high-molecular-weight chromosome conformation capture 
(3C) DNA, serial dilution and distribution of the resultant material 
into 96-well plates (1 pg into each well), Φ29-DNA-polymerase-based 
amplification, sonication and labelling with well-specific barcodes. This 
was followed by amplification, sequencing and computational assem-
bly of chains of ligation junctions that are defined here as ‘C-walks’  
(Fig. 1b and Methods).

We generated C-walk libraries from human K562 cancer cells and 
from mouse embryonic stem (mES) cells, which are both highly estab-
lished model systems for the exploration of chromosome conforma-
tions. Analysis of the inferred C-walk contacts indicated that pairwise 
genomic distance distributions and inter-chromosomal rates are 
similar to those observed in standard Hi-C (Supplementary Table 1  
and Extended Data Fig. 1a, b). Analysis of the C-walk coverage and 

size distribution (Fig. 1c) indicated that our approach (in K562 cells) 
assembled 48% of the pairwise ligations into C-walks of size 4 or more, 
and 14% to C-walks of size 8 or more. We recovered 45,200 fragments 
participating in C-walks involving 16 or more fragments. To confirm 
the accuracy of our reconstruction approach, we applied the procedure 
to linear DNA (Extended Data Fig. 1c, d). We estimate that the com-
plete assay associated fragments into C-walks with over 99% accuracy 
(Extended Data Fig. 1e, f), limiting the potential effect of amplification, 
labelling and sequencing errors on the downstream statistical analysis 
of C-walk distributions.

We calculated the average rate of Hi-C pairwise inter-chromosomal 
contacts to be 22% in K562 and 17% in mES cells. Higher-order analysis 
showed, however, that distinct classes of proximity ligation events influ-
ence this rate. We observed walks visiting only one chromosome (class I;  
Fig. 1d) and walks linking two chromosomes through one or more 
contacts (class II), but also walks bringing together fragments from 
three or more chromosomes (class III). While class III C-walks may 
theoretically represent true multi-chromosomal hubs, their internal 
structure (namely, their lack of intra-chromosomal hops) and nearly 
uniform distribution of pairwise contacts (Extended Data Fig. 1g, h) 
suggest that these are products resulting from spurious ligations and 
possibly explaining quality differences between in-solution and in- 
nucleus 3C protocols15. After filtering out class III C-walks, we esti-
mated the pairwise inter-chromosomal Hi-C contact rate to be 7–10% 
(Fig. 1e, f). Interestingly, more than half of the valid inter-chromosomal 
(class II) C-walks (for C > 4) link two chromosomes through more than 
one contact. Classification of the resultant inter-chromosome interfaces 
suggests that these are strongly restricted by the topological domain 
structure in each of the contacting chromosomes (Extended Data  
Figs 2a–f and 3a–e).

Each class I C-walk explores a chromosomal territory by a series of 
hops. The data show that, as suggested previously6,7, the pairwise chro-
mosomal distance bridged by a class-I hop is governed by a power-law-like  
regime: the aggregated probability of ‘big’ (for example, 1–100 Mb) 
hops is similar in scale to the aggregated probability of making ‘small’ 
(for example, 10 kb to 1 Mb) hops (Extended Data Fig. 1b). On the basis 
of this rule, the probability of a walk remaining constrained within a 
smaller fraction of the chromosome should decrease exponentially with 
the number of hops. Nevertheless, analysis of specific regions (Fig. 2a) 
suggested that a notable fraction of the class I C-walks are restricted 
to less than 1 Mb, and are frequently fully contained within one TAD 
(Fig. 2b). Moreover, C-walks that visit more than one TAD typically 
link elements at high chromosomal distances (Fig. 2c).

To quantify these observations, we defined the span of a class I 
C-walk to be the chromosomal distance between the minimal and 
maximal chromosomal coordinates visited by the walk. We also clas-
sified C-walks based on their compartment (active or inactive, using 
only the first TAD visited to avoid indirect correlations). The spans 
for increasingly long C-walks (Fig. 2d and Extended Data Fig. 3f) are 
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• Stable heterochromatic associations are major drivers of chromatin phase separation 
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Single-cell Hi-C reveals cell-to-cell
variability in chromosome structure
Takashi Nagano1*, Yaniv Lubling2*, Tim J. Stevens3*, Stefan Schoenfelder1, Eitan Yaffe2, Wendy Dean4, Ernest D. Laue3,
Amos Tanay2 & Peter Fraser1

Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and
DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for
millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we
introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy
X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show
variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active
gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C
data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular
organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome
activity patterns.

Chromosome conformation capture1 (3C) and derivative methods
(4C, 5C and Hi-C)2–6 have enabled the detection of chromosome
organization in the three-dimensional space of the nucleus. These
methods assess millions of cells and are increasingly used to calculate
conformations of a range of genomic regions, from individual loci
to whole genomes3,7–11. However, fluorescence in situ hybridization
(FISH) analyses show that genotypically and phenotypically identical
cells have non-random, but highly variable genome and chromosome
conformations4,12,13, probably owing to the dynamic and stochastic
nature of chromosomal structures14–16. Therefore, although 3C-based
analyses can be used to estimate an average conformation, it cannot be
assumed to represent one simple and recurrent chromosomal struc-
ture. To move from probabilistic chromosome conformations aver-
aged from millions of cells towards determination of chromosome and
genome structure in individual cells, we developed single-cell Hi-C,
which has the power to detect thousands of simultaneous chromatin
contacts in a single cell.

Single-cell Hi-C
We modified the conventional or ‘ensemble’ Hi-C protocol3 to create
a method to determine the contacts in an individual nucleus (Fig. 1a
and Supplementary Information). We used male mouse spleenic
CD41 T cells, differentiated in vitro to T helper (TH1) cells to produce
a population of cells (.95% CD41), of which 69% have 2n genome
content, reflecting mature cell withdrawal from the cell cycle. Chromatin
crosslinking, restriction enzyme (BglII or DpnII) digestion, biotin fill-
in and ligation were performed in nuclei (Fig. 1a and Extended Data
Fig. 1a) as opposed to ensemble Hi-C, in which ligation is performed
after nuclear lysis and dilution of chromatin complexes3. We then selected
individual nuclei under the microscope, placed them in individual
tubes, reversed crosslinks, and purified biotinylated Hi-C ligation junc-
tions on streptavidin-coated beads. The captured ligation products
were then digested with a second restriction enzyme (AluI) to fragment
the DNA, and ligated to customized Illumina adapters with unique

3-bp (base pair) identification tags. Single-cell Hi-C libraries were then
PCR amplified, size selected and characterized by multiplexed, paired-
end sequencing.

De-multiplexed single-cell Hi-C libraries were next filtered thor-
oughly to systematically remove several sources of noise (Extended
Data Fig. 1b–f and Supplementary Information). Hi-C in male diploid
cells can theoretically give rise to at most two ligation products per
autosomal restriction fragment end, and one product per fragment
end from the single X chromosome. Using BglII, the total number of
distinct mappable fragment-end pairs per single cell cannot therefore
exceed 1,201,870 (Extended Data Fig. 1g and Supplementary Infor-
mation). In practice, deep sequencing of the single-cell Hi-C libraries
demonstrated that following stringent filtering our current scheme
allows recovery of up to 2.5% of this theoretical potential, and has
identified at least 1,000 distinct Hi-C pairings in half (37 out of 74) of
the cells. Deep sequencing confirmed saturation of the libraries’ com-
plexity, and allowed elimination of spurious flow cell read pairings
and additional biases (Extended Data Tables 1–3). On the basis of
additional quality metrics we selected ten single-cell data sets, con-
taining 11,159–30,671 distinct fragment-end pairs for subsequent
in-depth analysis (Extended Data Fig. 1h–l). Visualization of the sin-
gle-cell maps suggested that despite their inherent sparseness, they clearly
reflect hallmarks of chromosomal organization, including frequent cis-
contacts along the matrix diagonal and notably, highly clustered trans-
chromosomal contacts between specific chromosomes (Fig. 1b).

Single-cell and ensemble Hi-C similarity
We used the same population of CD41 TH1 cells to generate an ensemble
Hi-C library. Sequencing and analysis17 of 190 million read pairs pro-
duced a contact map representing the mean contact enrichments
within approximately 10 million nuclei. The probability of observing
a contact between two chromosomal elements decays with linear dis-
tance following a power law regime for distances larger than 100 kilo-
bases (kb)3,18. We found similar regimes for the ensemble, individual

*These authors contributed equally to this work.
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The invention of chromatin conformation capture (3C) tech-
nology1 and derived methods2 has greatly advanced our 
knowledge of the principles and regulatory potential of 3D 

genome folding in vivo. Insights obtained from genome-wide 
contact maps derived from Hi-C data include the discovery of 
topologically associated domains (TADs), structurally insulated 
units of chromosomes of on average a megabase in size3–5, and 
of compartments, nuclear environments in which TADs with 
similar epigenetic signatures spatially cluster6. TADs and nuclear 
compartments are believed to contribute to genome functioning, 
whereas chromatin loops are thought to influence genome func-
tioning in a more deterministic, direct fashion. Such loops can 
only be detected when zooming to a much finer scale than whole 
chromosomes and TADs, either by ultra-deep Hi-C sequenc-
ing or by the application of targeted high-resolution approaches 
such 4C, 5C or capture-C technologies. Chromatin loops include 
architectural loops, often anchored by bound CTCF proteins, 
that form structural chromosomal domains7,8, as well as regula-
tory chromatin loops that bring distal enhancers in close physical 
proximity to target gene promoters to control their transcrip-
tional output. Detailed topological studies and genetic evidence 
have further indicated that individual enhancers can contact 
and control the expression of multiple genes. Conversely, single 
genes are often influenced by multiple enhancers5,9. Similarly, in 
population-based assays, individual CTCF sites can be seen con-
tacting multiple other CTCF sites. Based on such observations it 
has been hypothesized that DNA may fold into spatial chromatin 
hubs10,11. However, current population-based pair-wise contact 

matrices cannot distinguish clustered interactions from mutually  
exclusive interactions that independently occur in different cells. 
To investigate the existence and nature of specific hubs formed 
between regulatory sequences, CTCF-binding sites and/or genes, 
targeted high-resolution and high-throughput strategies are 
needed for detection, analysis and interpretation of multi-way 
DNA contacts.

Recently, several 3C procedures have been modified for the 
study of multi-way contacts between selected genes and regulatory 
sequences, but so far these approaches have been inherently lim-
ited in contact complexity, complicating the interpretation of their 
data12–15. At the genome-wide level, recent breakthroughs in the 
analysis of multi-way contacts have been made. These technologies 
give insight into the types of genomic sequences that tend to co-
occupy nuclear compartments. For example, a new genome-wide 
approach for multi-contact analysis, called C-Walks (chromosomal 
walks)14, gave a glimpse of the nuclear aggregation of genomic loci, 
indicating that, at the compartment level, cooperative aggregation 
between dispersed intra- and inter-chromosomal sequences may 
be rare but may occur, for example, at Polycomb bodies. C-walks, 
three-way Hi-C contact analysis15 and genome architecture map-
ping16 are all genome-wide methods that do not offer the local 
coverage necessary to study the functionally most relevant fine-
scale topologies formed at individual genes, individual regulatory 
sequences and individual domain anchors. To enable this analysis 
and to dissect the spatial interplay between multiple individual reg-
ulatory DNA elements and genes, we developed multi-contact 4C 
sequencing (MC-4C).

Enhancer hubs and loop collisions identified from 
single-allele topologies
Amin Allahyar1,2,7, Carlo Vermeulen! !3,7, Britta A. M. Bouwman3, Peter H. L. Krijger3,  
Marjon J. A. M. Verstegen3, Geert Geeven3, Melissa van  Kranenburg3, Mark Pieterse3, Roy Straver! !1,  
Judith H. I. Haarhuis4, Kees Jalink5, Hans Teunissen6, Ivo J. Renkens1, Wigard P. Kloosterman1, 
Benjamin D. Rowland4, Elzo de Wit! !6, Jeroen de Ridder! !1* and Wouter de Laat3*

Chromatin folding contributes to the regulation of genomic processes such as gene activity. Existing conformation capture 
methods characterize genome topology through analysis of pairwise chromatin contacts in populations of cells but cannot dis-
cern whether individual interactions occur simultaneously or competitively. Here we present multi-contact 4C (MC-4C), which 
applies Nanopore sequencing to study multi-way DNA conformations of individual alleles. MC-4C distinguishes cooperative 
from random and competing interactions and identifies previously missed structures in subpopulations of cells. We show that 
individual elements of the β -globin superenhancer can aggregate into an enhancer hub that can simultaneously accommodate 
two genes. Neighboring chromatin domain loops can form rosette-like structures through collision of their CTCF-bound anchors, 
as seen most prominently in cells lacking the cohesin-unloading factor WAPL. Here, massive collision of CTCF-anchored chro-
matin loops is believed to reflect ‘cohesin traffic jams’. Single-allele topology studies thus help us understand the mechanisms 
underlying genome folding and functioning.
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Chromatin conformation analysis of primary
patient tissue using a low input Hi-C method
Noelia Díaz 1, Kai Kruse 1, Tabea Erdmann2, Annette M. Staiger3,4,5, German Ott3, Georg Lenz2 &
Juan M. Vaquerizas 1

Chromatin conformation constitutes a fundamental level of eukaryotic genome regulation.

However, our ability to examine its biological function and role in disease is limited by the

large amounts of starting material required to perform current experimental approaches.

Here, we present Low-C, a Hi-C method for low amounts of input material. By systematically

comparing Hi-C libraries made with decreasing amounts of starting material we show that

Low-C is highly reproducible and robust to experimental noise. To demonstrate the suitability

of Low-C to analyse rare cell populations, we produce Low-C maps from primary B-cells of a

diffuse large B-cell lymphoma patient. We detect a common reciprocal translocation

t(3;14)(q27;q32) affecting the BCL6 and IGH loci and abundant local structural variation

between the patient and healthy B-cells. The ability to study chromatin conformation in

primary tissue will be fundamental to fully understand the molecular pathogenesis of diseases

and to eventually guide personalised therapeutic strategies.
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.
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(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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TADs are functional units

Figure adapted from Hui Zheng and Wei Xie. Nature Reviews Molecular Cell Biology (2019)
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FIGURE 1 
 
 

 
 
Fig 1. Loop extrusion as a mechanism domain formation. 
a. Examples of Hi-C contact maps at 5kb resolution showing domains from four chromosomal 
regions (GM12878 in-situ MboI (3)), highlighting domains (purple lines) and interaction peaks (blue 
circles).  
b. Model of LEF dynamics, LEFs shown as linked pairs of yellow circles, chromatin fiber in grey.  
From left to right: extrusion, dissociation, association, stalling upon encountering a neighboring 
LEF, stalling at a BE (red hexagon). 
c. Schematic of LEF dynamics (Movie-M1, Movie-M2). 
d. Conformations of a polymer subject to LEF dynamics, with processivity 120kb, separation 120kb. 
Left: shows LEFs (yellow), and chromatin (grey), for one conformation, where darker grey highlights 
the combined extent of three regions of sizes (180kb, 360kb, 720kb) separated by BEs. Right: 
shows the progressive extrusion of a loop (black) within a 180kb region. 
e. Simulated contact map for processivity 120kb, separation 120kb. 
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we chose to use only a third of the Hi-C reads 
available for this cell type in the data set. We 
first quantified the CTR pattern by partition-
ing the human genome into 100-kb bins, each 
representing a large virtual contig, and cal-
culated for each placed contig its average interaction frequency with 
each chromosome. To simulate a more difficult scenario and evaluate 
localization over long ranges, we omitted from this statistic the inter-
action data of the contig with its flanking 1 mb on each side, where 
the strongest Hi-C interaction signals are present. Then, we asked 
how well this statistic separates interchromosomal interactions from 
intrachromsomal interactions (Fig. 1a). We found that the average 
interaction frequency strongly separates inter- from intrachromo-
somal interactions, with an average area under the curve (AUC) of 
0.9998, suggesting this statistic is highly predictive of which chro-
mosome a contig belongs to. Next, we trained a simple multiclass 
model, a naive Bayes classifier, to predict the chromosome of each 
contig based on its average interaction frequency with each chromo-
some (Online Methods). To test the classifier, for each contig in the 
genome, we removed the interaction data for the contig and a flank-
ing region of 1, 2, 5 or 10 Mb on each side, and used the classifier to 
predict the position of the contig solely from Hi-C data (Fig. 1b,c), 
achieving a genome-wide accuracy of 0.998 when leaving out 1 Mb on 
each side. By thresholding the associated posterior probabilities for 
each prediction output by the classifier to identify high-confidence 
predictions, we find that at a threshold of P > 0.2 the classifier can 
achieve a near-constant error rate of <0.005 even when leaving 10-Mb  

gaps on each side of the contig (100 times the size of the contig).  
We conclude that the CTR interaction pattern can be used to accu-
rately predict to which chromosome an unplaced contig belongs, even 
if it is flanked by large gaps.

Next we sought to predict the genomic locus along a chromosome of 
an unplaced contig, given its chromosome and interaction pattern with 
placed contigs on the chromosome. We used the assembled portion of 
the genome to fit a probabilistic single-parameter exponential decay 
model describing the relationship between Hi-C interaction frequency 
and genomic distance (the DDD pattern). We removed in turn each 
contig from the chromosome, along with a flanking region of 1 Mb on 
each side, for the reasons mentioned previously, and estimated its most 
likely position by given its interaction profile and the decay model 
(Fig. 1d). We quantified the prediction error as the absolute value of 
the distance between the predicted position and the actual position. 
Our results show a cross-validated, genome-wide median error of  
1.1 Mb. Additionally, 89.5% of the contigs are placed within 2 Mb of 
their actual position and 24.0% are within 0.5 Mb of their actual posi-
tion (Fig. 1d, inset). We conclude that the DDD interaction pattern can 
be used to accurately predict the position of an unlocalized contig.

To show the utility of our approach for improving finished genomes, 
we collected two sets of contigs from hg19 (ref. 22) and HuRef7,  

a b
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Figure 1 Interaction frequency accurately 
predicts chromosome and locus for scaffold 
augmentation. (a) Average interaction frequency 
strongly separates interchromosomal from 
intrachromosomal interactions. For each 100-kb 
contig in chromosome 1, we calculate its average  
interaction frequency with each chromosome. 
We exclude interaction data from the contig’s 
1-Mb regions on each side, where the strongest 
interaction frequencies are typically found. 
The box plot shows the distribution of average 
interaction frequencies of all contigs over 
all chromosomes and demonstrates that the 
distribution of interchromosomal interaction 
frequencies is separated from intrachromosomal 
interaction frequencies. Whiskers represent 
minimal and maximal points within 1.5 of the 
interquartile range. (b) Naive Bayes predictive 
performance at various gap sizes. We trained 
a naive Bayes classifier and predicted the 
chromosome of each contig, leaving out a 1-, 2-, 
5- or 10-Mb flanking region on each side of the 
contig. Confident predictions are predictions  
with a posterior probability of at least 0.2.  
(c) Genome-wide view of naive Bayes predictive 
performance. The prediction for each contig is 
marked by a short vertical line, colored according 
to its true chromosome. Predictions showed were 
performed leaving out a 1-Mb flanking region 
on each side of the contig. Predictions that did 
not pass the confidence threshold are marked 
as “NC”. (d) Interaction frequencies accurately 
predict chromosomal locus. For every contig,  
we exclude interaction data from the contig’s 
1-Mb flanking regions on each side and then 
predict its location in cross-validation. The inset 
shows the cumulative distribution of the absolute 
prediction error. All statistics are genome-wide.
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Supplementary Figures 737 
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 740 

Supplementary Figure 1. Illustration of the metagenome binning signal provided by Hi-741 
C. Two bacterial cells are illustrated, each containing a single circular chromosome. For 742 
one genomic region in each of the two species, examples of associations that are likely 743 
(green; red is “not likely”) to be derived from Hi-C are illustrated.  744 
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