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1'he Nobel Prize 1n
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Early metagenomic sequencing

* Pioneering metagenomic studies used the Sanger platform

* i.e Venter, J.C. et al. Environmental genome shotgun sequencing of the Sargasso Sea.
Science 304, 66—74 (2004).

« 1800 genomic species , 148 novel bacterial phylotypes
* High-quality DNA sequence

 Relatively long (500-1000 bp)

e This technology can not provide sufficient read depth to saturate moderately
diverse communities
* Sanger-based metagenomic projects are often limited to:
* Fosmid or bacterial artificial chromosome libraries

* low-diversity microbial communities.
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Next-generation sequencing (NGS)

e Overcomes several of the disadvantages of Sanger sequencing
Substantially higher throughput
Cheaper cost per base sequencing

No cloning step

1
2
3. Simpler library preparation
A
5. Real time




DNA Sequencing Costs over time

Cost per Raw Megabase of DNA Sequence

Moore's Law v Moore's Law

National Human Genome National Human Genome
Research Institute Research Institute

genome.gov/sequencingcosts genome.gov/sequencingcosts

T T T i oy

the costof sequencing a human-sized genome _ g
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NGS enters the scene here

Technology improvements that 'keep up' with Moore's Law are widely regarded to be doing exceedingly well



Sequence data analysis is changing rapidly

* Few methods are completely static
e Softwareis still under active development
* New methods and tools are reported every month

e Staying on the learning curve is essential
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Metagenomics: a dominant contributor to sequence databases
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Next-generation sequencing (NGS)

* Not without new challenges...

«  Each new technology has a different error model and biases that need to be
considered during experimental design and sequence analysis

*  Errorsthat occurin the output sequence on NGS
* Indels (insertion/deletion) = bases inserted (In) or absent (del)

. Base substitutions

* Increased coverage can overcome errors but absolute number of sequencing errors
will increase with coverage
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NGS?
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llumina

* Market leader
e Latest addition Novaseq 6000
*  Output: 8o - 6000Gb
* Paired end reads: 1.6 - 40B
« 100S genomes?
* iSeq 100 (benchtop sequencer)

* Long-read sequencing market?
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Bejing Genomic Institute (BGI)

* Biggest sequencing centre on earth.
* Short-read sequencing platform, the BGISEQ-500,MGI-200, MGI-2000

* Aninitial study suggests it may produce data of a comparable quality to Illumina
(Mak et al. 2017).




General NGS Principle

e Sequence a large number of DNA
fragments (thousands to millions) in
parallel in a single machine run

e Possible downstream analyses
depends on:

* Choice of the sequencing instrument
and associated technology

* The way libraries are prepared

Vincent AT, et al; J Microbiol Methods; vol138:p60-71 (2017)
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Other bioinformatics analyses

Transcriptome
Community structure
Comparative genomics
SNP identification

etc.
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Basic concepts

read read

——
\

1]

insert

Insert: The DNA fragment that is used for sequencing.
Read: The part of the insert that is sequenced.
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Single-end or Paired-end reads...

Fragment (1 read/library molecule) _
2 ...Determines:

e How the libraries are

'“"'-> produced

e Large insert library

Paired-end or paired reads (2 reads/library molecule)

L Small insert library

— Large insert library v B
EIM

Vincent AT, et al; J Microbiol Methods; vol138:p60-71 (2017)



Coverage

17 bp

Consensus: f 1
TAATGCGACCTCGATGCCGGCGAAGCATTGTTCCCACAGACCGTGTTTTCCGACCGAAATGGCTCC

ATTGTTCCCACAGACCG
CGGCGAAGCATTGTTCC ACCGTGTTTTCCGACCG
AGCTCGATGCCGGCGAAG TTGTTCCCACAGACCGTG TTTCCGACCGAAATGGC
ATGCCGGCGAAGCATTGT ACAGACCGTGTTTCCCGA

TAATGCGACCTCGATGCC AAGCATTGTTCCCACAG TGTTTTCCGACCGAAAT
TGCCGGCGAAGCCTTGT CCGACCGAAATGGCTCC
\ )
2X coverage 6Xx coverageé bp 1x coverage
50% identity 100% identity

Coverage:# of reads underlying the consensus

[
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The past, present, and future of DNA sequencing - Dan Russell



Overview - lllumina

Clustering

|. Cluster ll. Flow Cell

orward grand
Reverse Strand

)
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Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research



A. Library preparation

Genomic DNA 1

l Fragmentation

B. Cluster amplification
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Flow cell

|

Adapters
L — Bridge amplification
cycles
l Ligation
O —— l
Sequencing S ———— i Wi olatel
L —
‘Clusters
C. Sequencing D. Alignment and data analysis
ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG
AGATGGTATTG
Sequencing cycles Reads GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATT
AGATGGCATTGCAATTTG

Digital image
Data are exported to an output file l

Cluster 1 > Read 1: GAGT...
Cluster 2 > Read 2: TTGA...
Cluster 3 > Read 3: CTAG...
Cluster 4 > Read 4: ATAC...

Text file

Reference AGATGGTATTGCAATTTGACAT

genome
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1.6 BILLION CLUSTERS
PER FLOW CELL




Sequence data output format - fastg

Instrument ID lane tile XY barcode read#

\ l //L / Header lines sequence quality scores
A YA/ yj—y _____________________________________________________________________________________ |

HHWI-EAZZO0S9 0006 FC7O6VJI:5:58:58594:21141FATCACG/ 1
TTAATTGGTAAATAAATC TCC TAATAGC TTAGATHNTTACC T TN
+HWI-EALZZ09 0006 FC7OAVI:S5:55:5894:211415FATCACG/ 1
efcfffffofeefffecffffffddf "feed] '] EBa * [YEEEEEEEEEERTTY]] []dddd  ddd"*dddadd* EEEEEEEEEEEEEEEEEEEEEEEE

° Animportant aspect of data analysis is knowing what you have.
* Atleast fourdifferent ways to report quality scores
* Header line formats differ with technology

2 3 1 o ®
CL100025298L1C002R050 244547

XxxxYyyy FOV(~Tile) Eli lr

Image: BIT 815: Analysis of Deep Sequencing Data See hitp://en.wikipedia.org/wiki/FASTO_format for more details



http://en.wikipedia.org/wiki/FASTQ_format

@EAS139:136:

(IIIumina v1.8 header version)

EAS139

136

2104

15343
197393

1
Y

18
ATCACG

the unique instrument name
therunid

the flowcellid

flowcell lane

tile number within the flowcell lane 4-digitnumber:
2 = over- (1) orunderside (2) of flowcell
1 =1 number of Swaths
o4 = tile (image) number from 1-16 (or more depending on technology)

'x'-coordinate of the cluster within the tile

'v'-coordinate of the cluster within the tile

the member of a pair, 1 or 2 (paired-end or mate-pair reads only)

Y if theread isfiltered, N otherwise

o when none ofthe control bits are on, otherwise it is an even number

index sequence

:2104:15343:197393 1: Y:18:ATCACG

A\ \

1 1 1

2 2 2
"

15 15 15

16 16 16

elixir



Challenges/Limitationswith lllumina. R1 R2 variations

Forward reads

in: encoding)

14
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3 L | /
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i I-
5-79 o 110114 135139 160-164 185-188 210214 235- 260-264 285-289
iti d (bp)

https://rachaellappan.github.io/16S-analysis/pre-processing-reads.html



Why are repeats a problem?

* The law of repeats
 Itisimpossible to resolve repeats of length L unless you have reads longer than L
 Itisimpossible to resolve repeats of length L unless you have reads longer than L

REDEA! e————
_D]_/FBJSG overlap
Fragmented assemb]y — [ Repeat | S O
@
Wrong assemb|y s R T — S Eli lr

Image: Erik Hjerde



Long vs short reads
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The solution?

Third Generation

(

Single Molecule
real-time long
reads

s

Pacific Biosciences
Single molecule real
time (SMRT)
sequencing
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Sequencing
J/
) ( )
Synthetic long
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( ) 4 ) 4
lllumina
Oxford Nanopore Synthetic Long- 10X Genomics
Read
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Pacific Biosciences: Sequencing D

Double-stranded DNA
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Half of data in reads: >20 kb

Pacific Biosciences: Sequencing DNA with highly accurate long reads

2500
2000
1500
100
ToP_S_/_o_f reads: >40 kb
500
| I ﬂm .o Longestreads: >60 kb
5 Mﬂmﬂﬁmm ppnas

10,000 30,000 40,000 50,000
Read Length

Reads

o
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NANOPORE SEQUENCING

At the heart of the MinION device, an enzyme unwinds DNA,

feeding one strand through a protein pore. The unique shape of \
each DNA base causes a characteristic disruption in electrical

current, providing a readout of the underlying sequence. 4\/,\’

DNA double
helix

DNA base

b 100

Unwinding enzyme

Sequence A A C T C G T




MinlON (Oxford Nanopore)

Very portable
No special equipmentto run
Simple run

10 minute prep

Very cheap to run

$500-900 per (reusable flow-cell)
Very long (100kb is not unusual) (record 2272580 bases)
Max throughput 10-30 Gb pr single flowcell

Reads appearin real-time (pull the USB plug when you
have enough data)




Samples added to flow cell here

Sensor chip with
multiple nanopores

elixir

Flow cells containing
sensing chemistry,
nanopore, and electronics



Futuromics: SmidglON and the Flongle (Oxford Nanopore)




Hybrid / long read assemblies in metagenomics are getting
more commonplace

nature communications BMC Genomics

Explore content ¥  About the journal ¥  Publish with us v Home About Articles Submission Guidelines

nature > nature communications > articles > article

Research \ Open Access | Published: 06 May 2021

Long-read metagenomics retrieves complete single-
contig bacterial genomes from canine feces

Article | Open Access | Published: 11 July 2019

Strain-level metagenomic assignment and
compositional estimation for long reads with
MetaMaps

Anna Cuscé &, Daniel Pérez, Joaquim Vifies, Norma Fabregas & Olga Francino

) . . . BMC Genomics 22, Article number: 330 (2021) | Cite this article
Alexander T. Dilthey &, Chirag Jain, Sergey Koren & Adam M. Phillippy

1866 Accesses | 2 Citations | 36 Altmetric | Metrics
Nature Communications 10, Article number: 3066 (2019) \ Cite this article

12k Accesses \ 24 Citations \ 66 Altmetric \ Metrics

nature communications

Explore content v About the journal v  Publish with us v

PacBio Long Reads Improve Metagenomic
Assemblies, Gene Catalogs, and Genome Binning nature > nature communications > articles > article

Article \ Open Access \ Published: 04 January 2021
Long-read metagenomics using PromethlON uncovers

Haiying Xie'21, Caiyun Yang!f, Yamin Sun?, Yasuo lgarashi’, ﬁ Tao Jin* and Feng Luo’?"

!Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongging, China

2PURGTON Gene Medical Institute Co., Ltd., Chongaing, China oral bacteriophages and their interaction with host

3Research Center for Functional Genomics and Biochip, Tianjin Biochip Co., Ltd., Tianjin, China bacteria

“The Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
Koji Yahara &, Masato Suzuki, Aki Hirabayashi, Wataru Suda, Masahira Hattori, Yutaka Suzuki & Yusuke '.
Okazaki

L]
Nature Communications 12, Article number: 27 (2021) | Cite this article E ’ l‘

5638 Accesses \ 4 Citations | 66 Altmetric \ Metrics




Sequence in contigs Contig N50 (bp) Number of contigs

Short read only 12,036 2,507175

Short read + nanopore

359,531 49,676
long reads
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