Trimming and filtering

https://www.dreamstime.com/stock-illustration-man-trimming-bush-garden-image64030511

Overview of this talk

Removing poor quality data

Data decontamination

Synchronization of paired-end reads

Merging overlapping reads pairs

Why is it important to perform QC and filtering/trimming?

Data analysis also costs money and time

Filtering data Length related

Quality score related

GC content related

Ambiguity code related

Sequence complexity related

Trimming data

Trim by length/position – fixed, e.g. 20 bp Trim tails Trim ends by quality scores

Trimming - Discuss two and two: what is this figure showing?

We trim the start and end of reads to remove poor quality data or adapter sequences

If the DNA fragment is shorter than the read length, the sequence reaction will go through the read and into the adapter

Illumina adapter sequences

When preparing a (TrueSeq) library, adaptors are ligated to the DNA of interest

We filter reads to remove poor quality data

Common to set some quality thresholds and remove all reads that does no comply

For example remove all reads with a lower average Q score than 20, or reads with more than 5 Ns

For example: Remove all reads with a lower average Q score than 20

For example: Remove all reads with more than 5 Ns

AfterQC - Automatic Filtering, Trimming, Error Removing and Quality Control for FASTQ data

Performs quality control and filtering/trimming of the sequence reads

AfterQC analyses the overlap of paired sequences for pair-end sequencing data

AfterQC will correct the low quality base according to its high quality mate

5' TTTAGGCCTGTCACTGTGAACGCTATCAGCAAGCCTTTGCATGATTTTTC TCACTGTGAACGCTATCTGCAAGCCTTTGCATGATTTTTCTCTTTCCCAC 5'

R2 (reverse complement) 📰 overlapped 📒 mismatch with a low quality base

Removal of 3' adapter in the tail

Popular trimming tools

Many tools available – here are some :

- AfterQC
- Fastp
- Trimmomatic
- CutAdapt
- AlienTrimmer
- Sickle
- Trim Galore
- Sycthe
- Prinseq

It is important to remove sequence contaminations as early as possible

There can be many sources of contamination in the final sequence library

For example: PhiX sequences from the sequencing kit

http://losnuevosguerreros.org

For example: Metagenomic samples may contain sequences from the host

PhiX control

PhiX is used as a quality and calibration control for Illumina sequencing runs 10% of the genomes that are published in literature are contaminated with PhiX

https://www.illumina.com

Commentary Open Access Published: 30 March 2015

Large-scale contamination of microbial isolate genomes by Illumina PhiX control

<u>Supratim Mukherjee</u> [⊡], <u>Marcel Huntemann</u>, <u>Natalia Ivanova</u>, <u>Nikos C Kyrpides</u> & <u>Amrita Pati</u>

Standards in Genomic Sciences 10, Article number: 18 (2015) Cite this article

FastQ Screen allows you to screen sequences against a set of sequence databases

Normally used to screen for host contaminations

Label sequences that match sequences in the database you provide

Popular decontamination tools

Removal of host contamination

- Fastq Screen
- DeconSeq

Synchronized FASTQ files are important for many tools

Some tools may remove one of the reads in a read-pair, hence the FASTQ files gets out of sync

Synchronized FASTQ files are important for many tools

Some tools may remove one of the reads in a read-pair, hence the FASTQ files gets out of sync

Synchronize FASTQ files with Repair

Repair pulls out the "singletons" and produce synchronized paired-end FASTQ files

DNA insert sizes and overlapping read pairs

DNA insert sizes and overlapping read pairs

Inner distance = 80 bp Insert size = R1 + R2 + inner distance = 680 bp Fragment size = R1 + R2 + inner distance + adapters (x2) = 800 bp

Insert size in BBMerge is a bit confusing since the inner distance for overlapping reads is negative

Inner distance = BBMerge Insert size = -80 Insert size = R1 + R2 + BBMerge Insert size = 520 bp Fragment size = R1 + R2 + inner distance + adapters (x2) = 640 bp

#InsertSize	Count (reads)
101	10248
102	10619
103	10397
104	10357
105	10218
106	10435
107	10288
108	9973

Generate longer reads by overlapping and merging read pairs before assembling a genome using BBmerge

Merging reads will reduce computational costs and improve the assembly

Generate longer reads by overlapping and merging read pairs before assembling a genome using BBmerge

Merging reads will improve the quality of the reads and generate longer reads Longer reads allow the use of longer k-mers or fewer comparisons

Program	NA50 (bp)	Total Misassemblies	Indels/ 100 kbp	Genome Completeness (%)
Raw Data	60007	119	1.13	84.5
BBMerge	102577	127	0.84	84.88
BBMerge-REM	119328	117	0.81	85.18
BBMerge-RSEM	104441	115	0.84	84.88
COPE	89603	294	1.52	85.17
COPE-M3	98240	227	1.24	83.92
fastq-join	80672	183	1.17	84.74
FLASH	94846	282	1.41	85.20
leeHom	101992	290	1.1	84.91
PEAR	60937	660	1.46	84.28
Stitch	5623	20986	47.78	68.38
USEARCH	102156	131	0.88	84.77
XORRO	97403	158	1.08	84.85

https://doi.org/10.1371/journal.pone.0185056.t003

Generate report and show to your boss

MultiQC is a reporting tool that parses summary statistics from results and log files generated by other bioinformatics tools

Parses relevant information from log files to a HTML report file

Multioc v1.3	MultiQC					MultiQC Toolbox		
General Stats		ooulto fro	m biginformation analy		, xodio		pply	
QUAST	A modular tool to aggregate results from bioinformatics analyses ac report.				2 OCT	From To + Click here for bulk input.		
Assembly Statistics					×			
Number of Contigs	Report generated on 2017-12-24, 14:22 ba /reduced_data/multigc	Report generated on 2017-12-24, 14:22 based on data in: /Users/service/Box Sync/ELIXIR/Excellerate/Mc					ear	
FastQC	, : cadeca_ad ca) ma correct	/reduced_data/mottide						
Sequence Quality Histograms	Welcome! Not sure where to start? Watch a tutorial video (6:06)				()			
Per Sequence Quality Scores								
Per Base Sequence Content	Operated Otatiotics				Ŧ			
Per Sequence GC Content	General Statistics				H			
Per Base N Content	Copy table	Plot Show	ing $^{8}/_{8}$ rows and $^{5}/_{7}$ columns.					
Sequence Length Distribution	Sample Name	N50 (Kb	p) Length (Mbp)	% Dups	0			
Sequence Duplication Levels	clean_megahit	3.4bp	29.6bp					
Overrepresented sequences	clean_metaspades	9.4bp	30.2bp					
Adapter Content	sample_R1			0.0%	48			
sample_R2			0.0%	48				
	sample_megahit	3.4bp	29.7bp					
	sample_metaspades	4.0bp	29.7bp					
	sample_trim_megahit	3.7bp	29.5bp					
	sample_trim_metaspades	4.0bp	29.4bp					
					~			