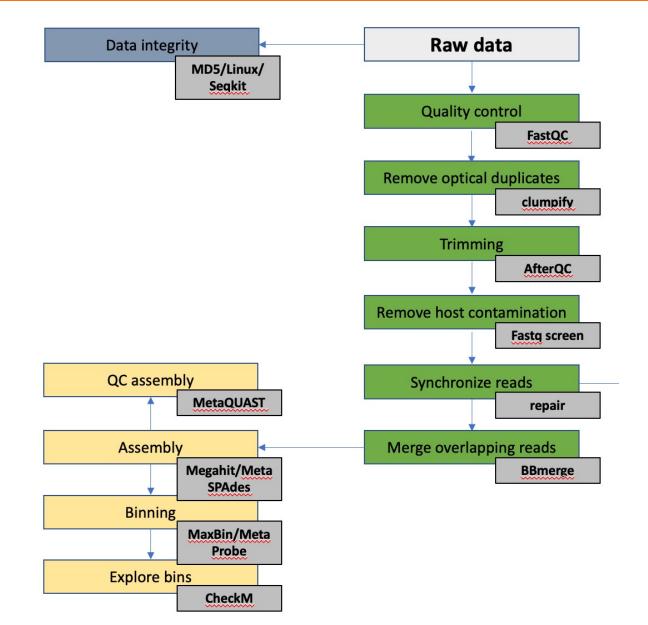
6. Assembly and validation

Obtaining a genome sequence Metagenomic assembly Evaluation of metagenomic assemblies



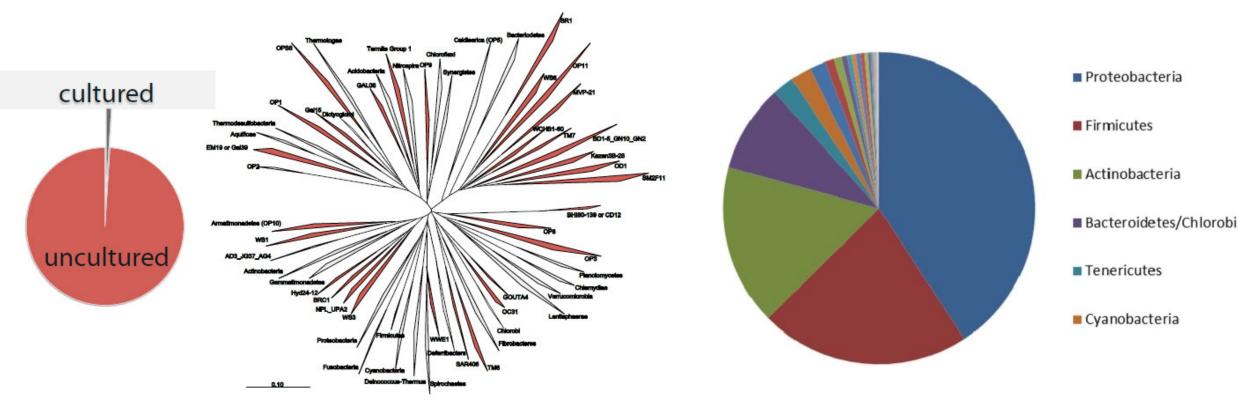
Assembly is the computational reconstruction of a longer sequence from smaller sequence reads

Which method should I choose that will produce the highest-quality assembly with the data that I have?

Why do we want to sequence metagenomes?

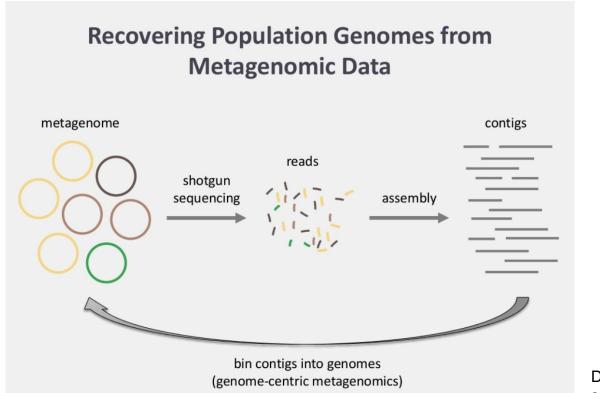
Uncultivable organisms – microbial dark matter

Many lineages known from 16 rRNA sequencing lacks a genomic representative



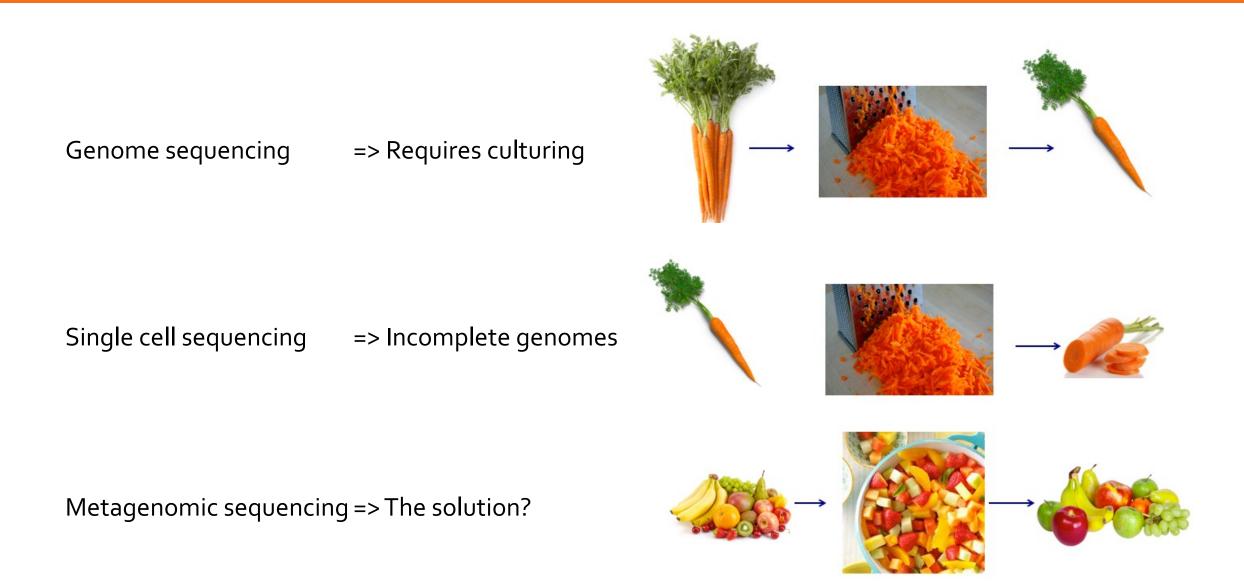
Important for understanding the biology and functional potential of hard-to-culture microorganisms

Metagenomic recovery of complete or draft microbial genomes is a starting point to analyze the "taxon-specific" potential of organisms within their community and ecosystem context



Donovan Parks, Australian school of ecogenomics

Obtaining a genome sequence



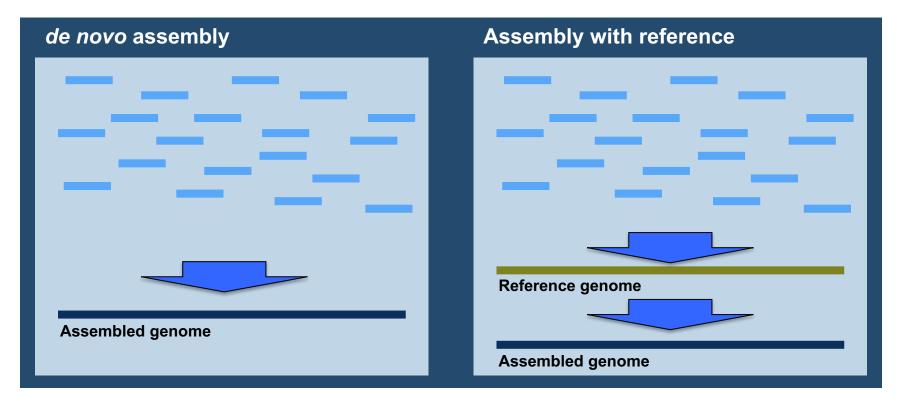
There are two approaches for sequence assembly

de novo assembly:

Reconstructing a DNA sequence with no prior knowledge of the sequence

Assembly with reference sequences:

Mapping sequence reads using a reference sequence



How do we perform sequence assembly of single genomes?

Challenge if you don't know what the genome should look like

We have few ways to distinguish true insight from wrongly assembled genome sequence

What is real, what is missing, and what is experimental artifact?

How do we perform sequence assembly of metagenomes?

Even more challenging for metagenomes

How do we perform sequence assembly of metagenomes?

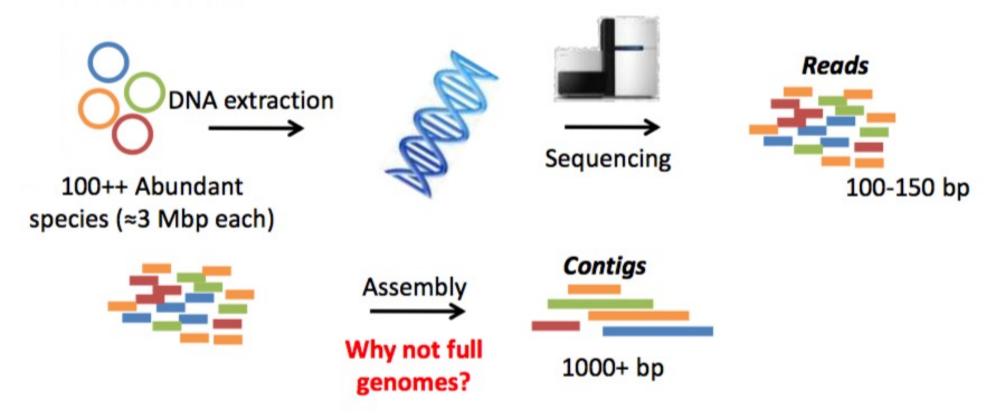
Diverse samples – more challenging as it is not possible to sequence the complete DNA

Obtaining a genome sequence from a metagenomic sample

Metagenomic Assembled Genomes (MAGs)

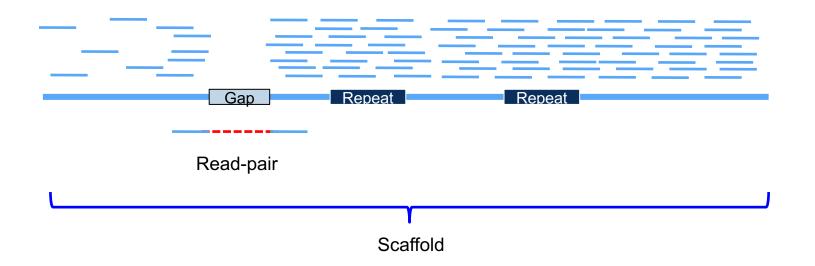
Similar as to genome sequencing

Trying to reconstruct the individual genomes of a mixture of DNA from an entire population



Some definitions of terms

- Contig = Consensus sequence of overlapping sequence reads
- Scaffold = Contigs joined together using read-pair information
- Gap = Regions of the original DNA sequence that are not covered
- Repeats = Identical regions of DNA



Some definitions of terms

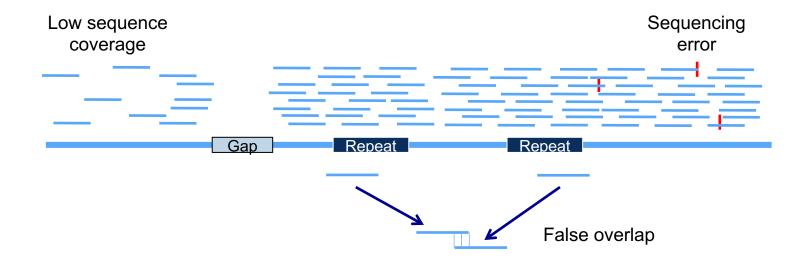
Contig	= Consensus sequence of overlapping sequence reads
Scaffold	= Contigs joined together using read-pair information
Gap	= Regions of the original DNA sequence that are not covered
Repeats	= Identical regions of DNA

Coverage = The average number of reads that cover each base

Number of reads (n) x Length of reads (l) Length of metagenome (L) Uncovered regions

```
Noise in the data (1-2% of the bases are wrong)
```

Sequence repeats (bacterial genomes ~5%, mammals ~50%)



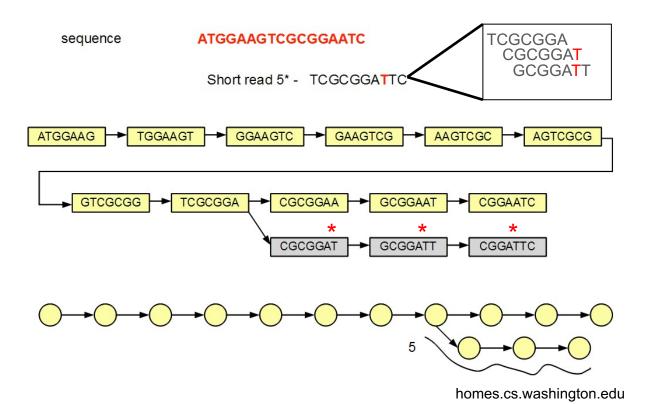
Challenges in assembly of genome sequences

Identify overlapping sequence reads or K-mers and create a graph

Challenges when there are variations or repeats

Creates bubbles in the graph

Split into contigs



Challenges obtaining a MAGs

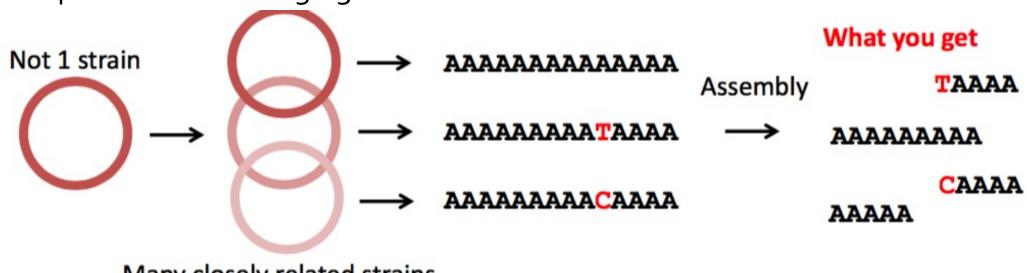
Very fragmented and rarely complete genomes in the sample

Highly diverse DNA (extremely many K-mers?)

Diverse level of abundance

Different relatedness to each other (same specie but different strains?)

Computational challenging



Many closely related strains

Challenges obtaining a MAGs

Most metagenomics assemblers use de Bruijn graphs

Algorithms for single genome assemblies cannot be used directly

Digital normalization aims to eliminate redundant reads

Partition the de Bruijun graph prior to assembly – lower memory costs

'Bubble popping' procedure. Parallel paths in the graph that differ by only a small amount, these paths are collapsed into one

• Metagenomic assemblies will still be highly fragmented - Binning

Generate longer reads by overlapping and merging read pairs before assembling a sequence

S. aureus – PE illumina	Original assembly	FLASH
Total contig size (Mb)	2.91	2.94
Contig N5o size (kb)	1.45	8.40
Contig maximum (kb)	8.18	36.07
Scaffold N50 (kb)	2.07	8.80
Scaffold maximum (kb)	11.23	36.07

Magoč and Salzberg, Bioinformatics. 2011 Nov 1; 27(21): 2957–2963.

Short-read sequencing technologies have made the computational challenge harder

Highly memory-intensive task (TB) and storage demanding (TB)

45 GB of raw sequencing data for 32 × coverage of a human genome (three Illumina HiSeq2500 runs)

F1000Research Open for Science

Ten steps to get started in Genome Assembly and Annotation [version 1; referees: awaiting peer review]

Victoria Dominguez Del Angel (p)¹, Erik Hjerde (p)², Lieven Sterck (p)^{3,4}, Salvadors Capella-Gutierrez^{5,6}, Cederic Notredame^{7,8}, Olga Vinnere Pettersson⁹, Joelle Amselem (p)¹⁰, Laurent Bouri (p)¹, Stephanie Bocs (p)¹¹⁻¹³, Christophe Klopp (p)¹⁴, Jean-Francois Gibrat (p)^{1,15}, Anna Vlasova (p)⁸, Brane L. Leskosek¹⁶, Lucile Soler¹⁷, Mahesh Binzer-Panchal (p)¹⁷, Kenrik Lantz (p)¹⁷

Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data

Samuel Lampa, Martin Dahlö, Pall I Olason, Jonas Hagberg and Ola Spjuth 🖾

GigaScience 2013 2:9 DOI: 10.1186/2047-217X-2-9 © Lampa et al.; licensee BioMed Central Ltd. 2013

Some questions you should ask before you start sequencing

What is the purpose of sequencing the metagenome?

Complete sequence (Base-perfect sequencing)

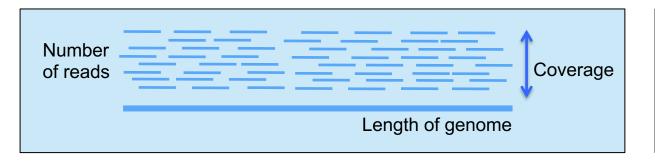
Draft sequence

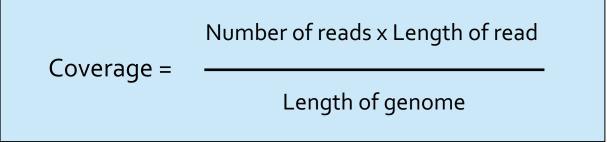
How much data (and what technology) do you need?

Access to computational resources?

Plan for analyses?

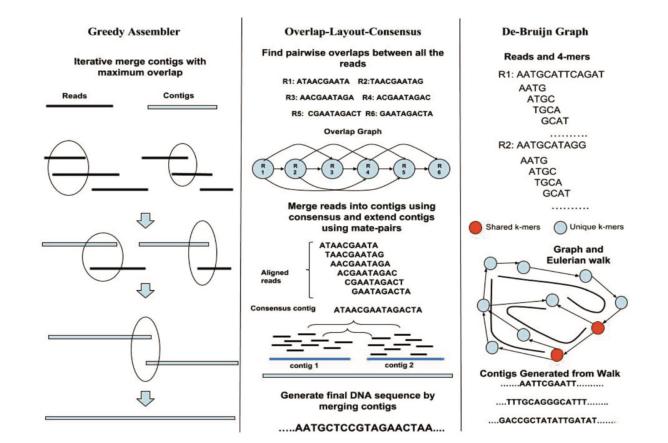
http://www.sullivan-financial.com/p/planning-your-financial-future





Graph-based assembly methods

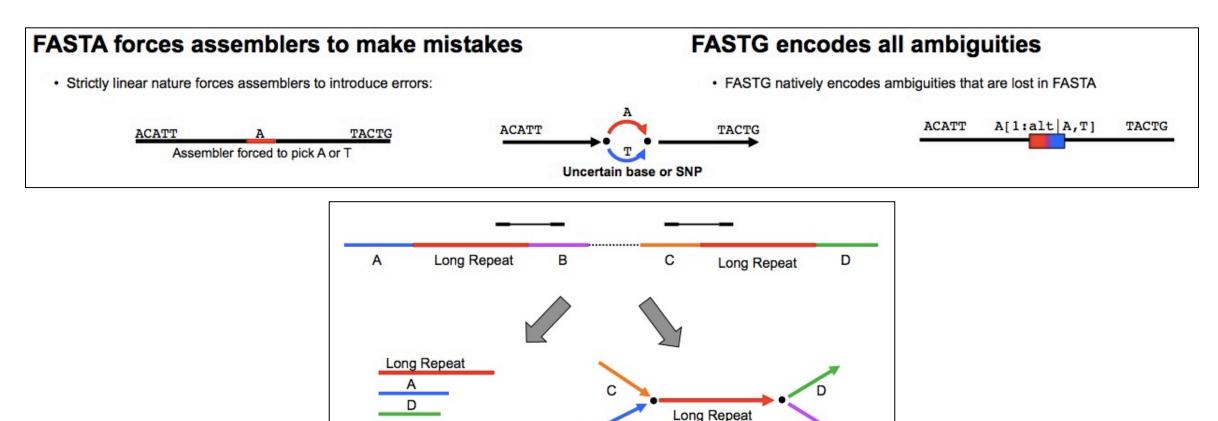
Greedy graph assembly (greedy extension, or extension-based) Overlap-Layout-Consensus assembly (OLC) De Bruijn graph assembly (DBG)



22

Many assemblers produce an assembly graph in FASTG format (G=graph)

Unlike FASTA (linear representation), FASTG can express branching arising from eg. ambiguities and repetitive segments



Graph

FASTA

FASTG and derived FASTA files share the same base co-ordinate system

FASTA + Markup will produce the original FASTG

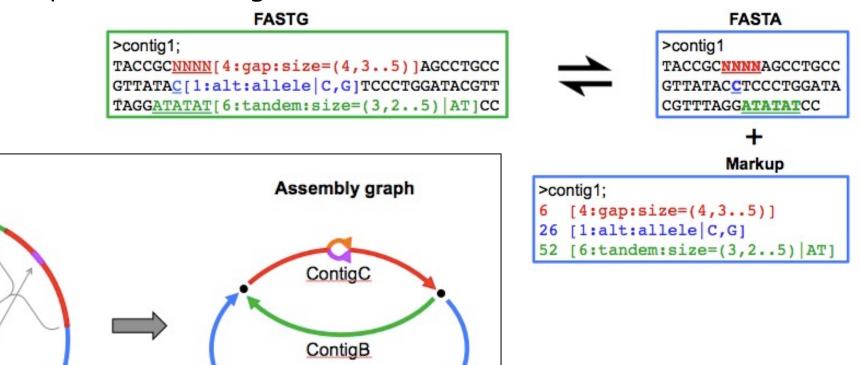
Uncertain tandem

repeat

Genome

Long imperfect repeat

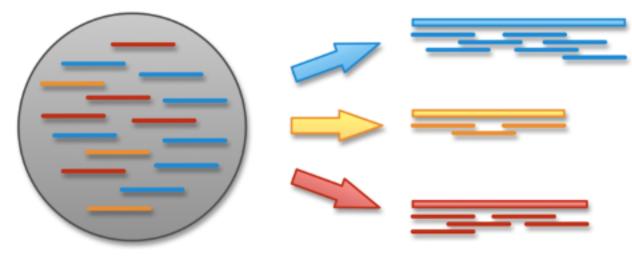
> Single base difference



ContigA

Metagenome assembly tools

Megahit MetaSPAdes Snowball MetaVelvet Ray Meta MetAMOS



Andreas Bremges

CAMI - challenge the developers to benchmark their programs

Highly complex and realistic data sets ~700 newly sequenced microorganisms ~600 novel viruses and plasmids Assembly and genome binning Taxonomic profiling and binning

nature methods

Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software

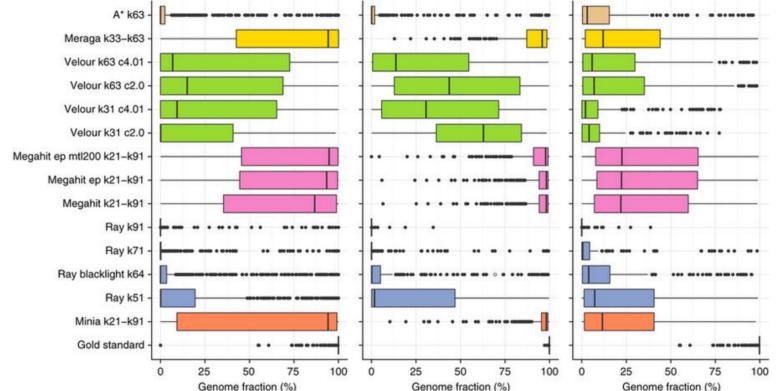
Alexander Sczyrba A, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes Dröge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, Andreas Bremges, Adrian Fritz, Ruben Garrido-Oter, Tue Sparholt Jørgensen, Nicole Shapiro, Philip D Blood, Alexey Gurevich, Yang Bai, Dmitrij Turaev, Matthew Z DeMaere, Rayan Chikhi, Niranjan Nagarajan, Christopher Quince, Fernando Meyer, Monika Balvočiūtė, Lars Hestbjerg Hansen, Søren J Sørensen, Burton K H Chia, Bertrand Denis, Jeff L Froula, Zhong Wang, Robert Egan, Dongwan Don Kang, Jeffrey J Cook, Charles Deltel, Michael Beckstette, Claire Lemaitre, Pierre Peterlongo, Guillaume Rizk, Dominique Lavenier, Yu-Wei Wu, Steven W Singer, Chirag Jain, Marc Strous, Heiner Klingenberg, Peter Meinicke, Michael D Barton, Thomas Lingner, Hsin-Hung Lin, Yu-Chieh Liao, Genivaldo Gueiros Z Silva, Daniel A Cuevas, Robert A Edwards, Surya Saha, Vitor C Piro, Bernhard Y Renard, Mihai Pop, Hans-Peter Klenk, Markus Göker, Nikos C Kyrpides, Tanja Woyke, Julia A Vorholt, Paul Schulze-Lefert, Edward M Rubin, Aaron E Darling, Thomas Rattei & Alice C McHardy A - Show fewer authors

Metagenome assembly tools - performance

Main conclusion:

- Assembly is substantially affected by the presence of related strains
- Parameter settings markedly affected performance

Assemblers using multiple k-mers (Minia, MEGAHIT and Meraga) substantially outperformed single k-mer assemblers

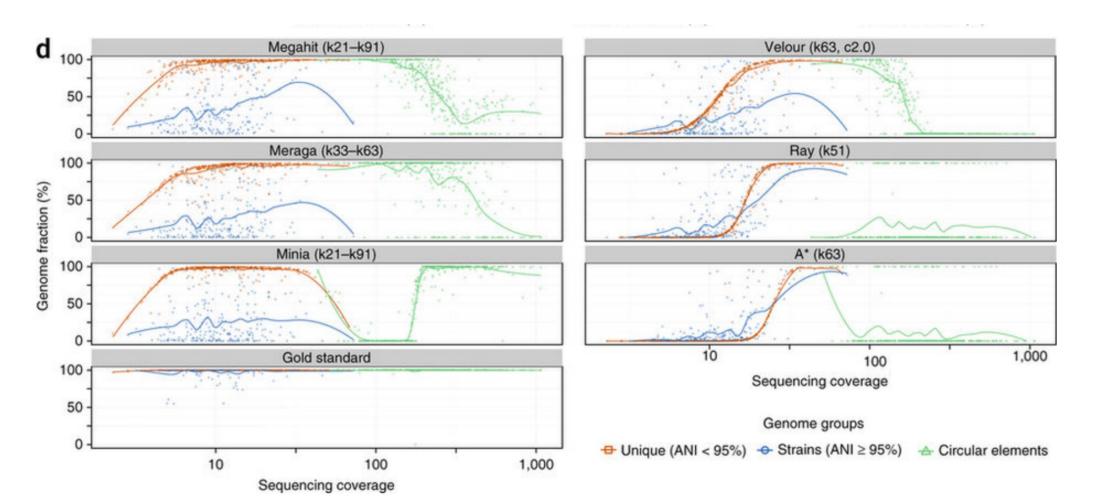


Metagenome assembly tools - performance

Main conclusion:

28

Most assemblers except for Meraga and Minia did not recover very-high-copy circular elements



Evaluation of metagenome assemblies

Assembly accuracy is difficult to measure!!!!

Few ways to distinguish true insight from wrongly assembled metagenome sequences

MetaQUAST evaluates and compares metagenome assemblies based on alignments to close references

N50 = the smallest of the largest contigs covering 50% of the total size of all contigs Misassembly where two parts of the same contig align to distinct references

Contigs that include both large aligned and unaligned fragments

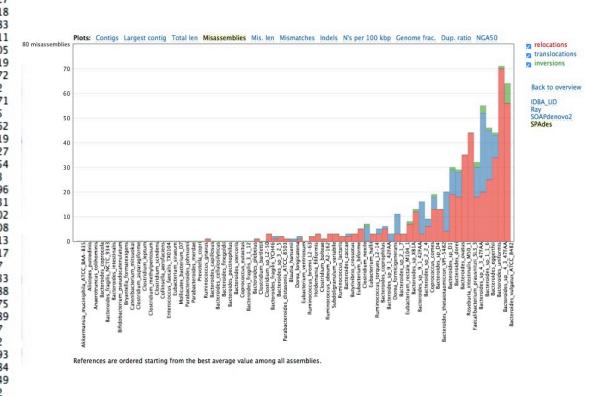
Statistics without reference	≡ IDBA_UD	🗏 Ray	SOAPdenovo2	SPAdes			
⊢ # contigs 🖂	31224	10 327	36 468	40 5 4 6	Worst	Median	Best
Largest contig 🖃	305 144	99 107	40 707	189 063			
Total length 🖃	80 325 286	30 411 921	46 741 224	92 397 329			
Total length (>= 1000 bp)	69 223 529	27 080 646	30 720 336	77 823 828			
Total length (>= 10000 bp)	34 930 908	13 755 677	2 800 864	33 477 263			
Total length (>= 50000 bp)	16 008 349	2 346 322	0	11 409 912			
Misassemblies							
# misassemblies 🖂	1132	407	831	1240			
Misassembled contigs length 🖃	10 448 260	4 115 772	911 826	10 780 557			
Mismatches							
+ # mismatches per 100 kbp 🖂	904.95	1054.68	888.21	1401.84			
# indels per 100 kbp 🖂	31.88	27.7	17.09	51.64			
# N's per 100 kbp 🖃	238.48	2087.27	3730.51	1425.14			
Genome statistics							
– Genome fraction (%) 🖂	12.796	4.386	8.055	11.585			
Akkermansia_muciniphila_ATCC	0.003	-	-	0.011	MotoOLL		on of motogono
Alistipes_putredinis	1.366	0.595	0.61	1.117	MetaQUAST: evaluation of n		on or metageno
Anaerotruncus_colihominis	2.466	2.067	1.768	2.320	assemblies		
Bacteroides_caccae	5.343	2.643	3.928	5.138	Bioinform	natics. 2015;3	32(7):1088-1090
Bacteroides_capillosus	1.173	0.27	0.449	1.05	doi:10.10)93/bioinform	atics/btv697
Bacteroides_cellulosilyticus	1.278	0.952	1.824	0.96			
Bacteroides conrocola	30.532	-	_	_			

Compare the assembly from different assemblers

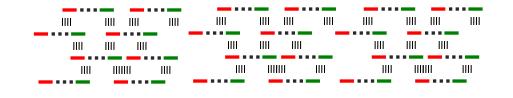
Or with raw data or trimmed/filtered data

Reference size: 306 971 432 bp

Reference	Size, bp	GC, %
Akkermansia_muciniphila_ATCC_BAA-835	2 664 102	55.76
Alistipes_putredinis	2 550 678	53.27
Anaerotruncus_colihominis	3719688	54.18
Bacteroides_caccae	5 493 117	42.83
Bacteroides_capillosus	4241076	59.11
Bacteroides_cellulosilyticus	7 694 202	43.05
Bacteroides_coprocola	2784	45.19
Bacteroides_coprophilus	4041504	45.72
Bacteroides_dorei	6 060 928	42.2
Bacteroides_eggerthii	4611535	44.71
Bacteroides_finegoldii	5 124 109	42.5
Bacteroides_fragilis_3_1_12	5 530 115	43.62
Bacteroides_fragilis_NCTC_9343	5 205 140	43.19
Bacteroides_fragilis_YCH46	5 277 274	43.27
Bacteroides_intestinalis	4 605 106	43.54
Bacteroides_ovatus	7 010 996	42.3
Bacteroides_pectinophilus	29 332	36.96
Bacteroides_plebeius	4 421 924	44.31
Bacteroides_sp_1_1_6	6760735	43.02
Bacteroides_sp_2_1_7	5 180 144	45.08
Bacteroides_sp_2_2_4	7 101 224	42.13
Bacteroides_sp_3_2_5	5 116 282	43.17
Bacteroides_sp_4_3_47FAA	5 442 925	42.7
Bacteroides_sp_9_1_42FAA	5 622 644	42.33
Bacteroides_sp_D1	5 974 559	41.88
Bacteroides_sp_D4	5 538 248	41.75
Bacteroides_sp_XB1A	5 976 145	41.89
Bacteroides_sp4_3_47FAA	5 442 925	42.7
Bacteroides_sp9_1_42FAA	4684745	42.2
Bacteroides_stercoris	4 102 660	45.93
Bacteroides_thetaiotaomicron_VPI-5482	6 260 361	42.84
Bacteroides_uniformis	4 835 507	46.49
Bacteroides_vulgatus_ATCC_8482	5 163 189	42.2
Bifidobacterium_pseudocatenulatum	2 313 752	56.38
Blautia_hansenii	3 0 5 8 7 2 1	38.99
Bryantella_formatexigens	4 548 960	49.55
Butyrivibrio_crossotus	2 496 039	37.75

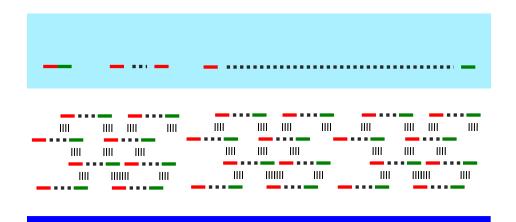


Align reads against assembly of itself (not against reference) Erroneous placement of reads within the assembly These signatures that can be detected computationally



ASSEMBLY

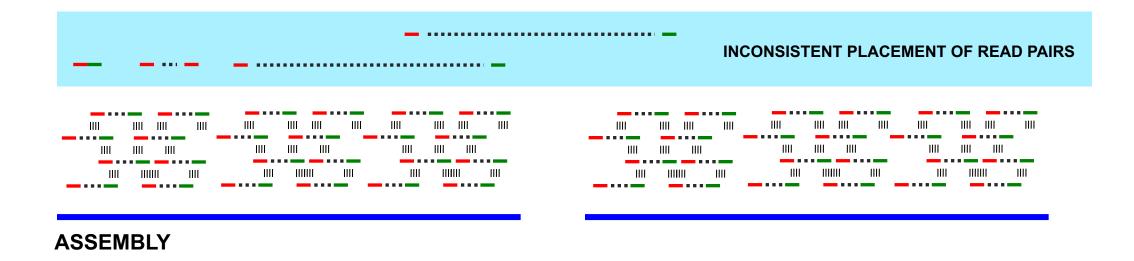
Align reads against assembly of itself (not against reference) Erroneous placement of reads within the assembly These signatures that can be detected computationally



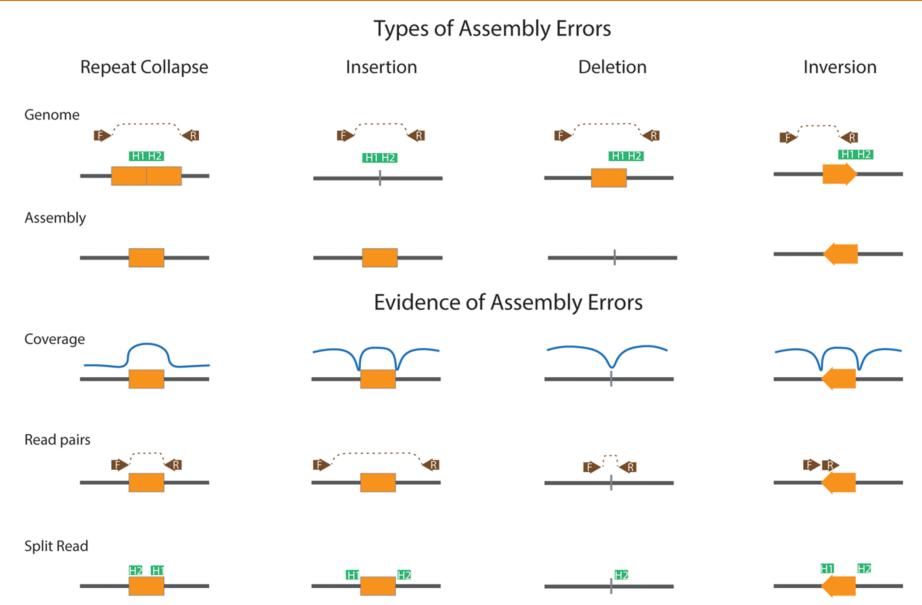
ASSEMBLY

Align reads against assembly of itself (not against reference) Erroneous placement of reads within the assembly

These signatures that can be detected computationally



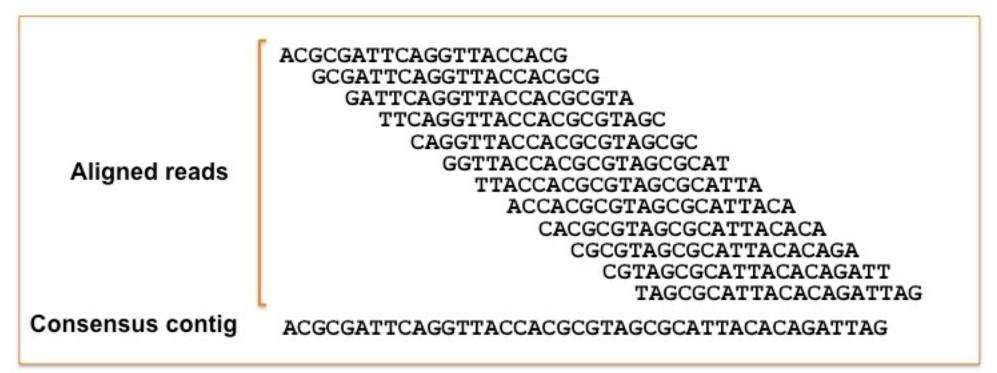
Four primary types of assembly errors that can be identified by mapping reads to the assembly



Brief Bioinform. Published online August 07, 2017. doi:10.1093/bib/bbx098

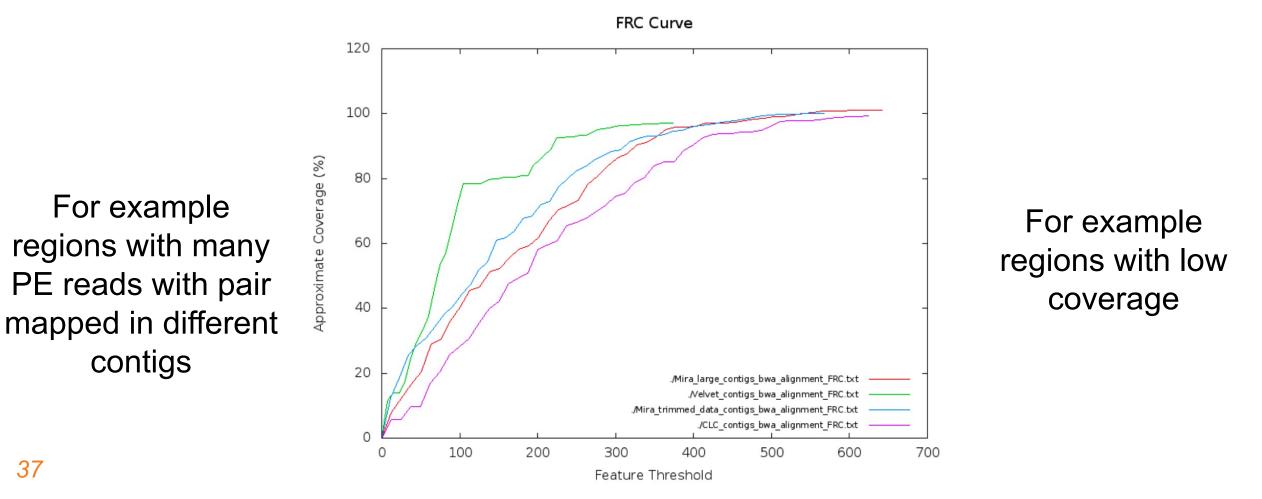
Use read alignment statistics to see how well do the reads align back to the draft assemblies

Read congruency is an important measure in determining assembly accuracy Clusters of read pairs that align incorrectly are strong indicators of mis-assembly



FRCbam uses the alignment of reads to find regions of assembled sequence that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)



FRCbam uses the alignment of reads to find regions of assembled sequence that appear to be inconsistent with the read data

Reports features (possible inconsistencies) in FRCs (Feature Response Curves)

Feature	Description
LOW_COV_PE	low read coverage areas (all aligned reads).
HIGH_COV_PE	high read coverage areas (all aligned reads).
LOW_NORM_COV_PE	low paired-read coverage areas (only properly aligned pairs).
HIGH_NORM_COV_PE	high paired-read coverage areas (only properly aligned pairs).
COMPR_PE	low CE-statistics computed on PE-reads.
STRECH_PE	high CE-statistics computed on PE-reads.
HIGH_SINGLE_PE	high number of PE reads with unmapped pair.
HIGH_SPAN_PE	high number of PE reads with pair mapped in a different contig/scaffold.
HIGH_OUTIE_PE	high number of mis-oriented or too distant PE reads.
COMPR_MP	low CE-statistics computed on MP reads.
STRECH_MP	high CE-statistics computed on MP reads.
HIGH_SINGLE_MP	high number of MP reads with unmapped pair.
HIGH_SPAN_MP	high number of MP reads with pair mapped in a different contig/scaffold.
HIGH_OUTIE_MP	high number of mis-oriented or too distant MP reads.

The Table provides a brief description for each implemented feature. doi:10.1371/journal.pone.0052210.t001