
Introduction to Linux and Anaconda
Getting familiar with the terminal

Espen Mikal Robertsen
01.11.2021, Lisbon, Portugal

Outline

• How to work with VMs, setup and access
• Checkpoint 1: Getting everyone up and running!

• Getting around in Linux practical / live demo
• Checkpoint 2: Copying your practical files!
• Intro to Anaconda package manager
• Managing environments in Anaconda practical
• Checkpoint 3: Playing around with Anaconda

Introduction to Hands-on

Most bioinformatic analyses tools require Linux to work.
We will be working on virtual Ubuntu machines hosted in a cloud

Virtual machines via remote desktop

To use your designated virtual machine you need to connect to it using a remote
desktop tool on your client machine
We will use a tool called X2Go to achieve this

Client (Windows) VM (Ubuntu) Someone else’s
computers

(Cloud)

Connecting with x2go

To use your VM you need a host
(address), a username and an SSH
port specific to your user

Once connected, your personal VM should look like this

Once inside your virtual VM, you need to start a terminal window to start working
on the exercises. Data (Practical) will be copied from shared disk.

Vms cost money and are on a time schedule

• Automatic shutdown at 18:00
• You can control your VM from a website:

https://biolab.azurewebsites.net/
Remember to run stop-server in the terminal when done!

https://biolab.azurewebsites.net/

Checkpoint 1: Let’s get everyone up and running!

1. Start Remote desktop client (X2Go)
2. Input address / credentials (details in link at the bottom)
3. Log in to VM from login screen

https://bit.ly/3EgXMUt

https://bit.ly/3EgXMUt

Checkpoint 1: Let’s get everyone up and running!

Understanding the filesystem is apparently not trivial knowledge
anymore

(https://futurism.com/the-byte/gen-z-kids-file-systems)

A quick overview of the filesystem
The shiny user friendly file system browser on mac is an abstraction.

The filesystem using terminal is not abstracted

/home/kurs01/practical/1/myfile.txt

… which can be a bit confusing at first. Think up-side-down tree!

An quick overview of the filesystem (from root, /)
The complete linux filesystem looks quite different from Windows and Apple
abstractions.

Path Description

/bin Common executables available for everyone, “cp”, “rm”, “ls” etc

/boot Kernel and boot configuration

/etc System and program configuration files

/home Non-root user home directories (/home/kurs00)

/lost+found Saved files due to some failure

/media - /mnt - /net Directories for mounting external devices such as disks

/opt Various software

/proc Virtual filesystem for resources, processes and more

/tmp Temporary files. These will disappear on reboot!

/usr “Mini filesystem” on a user level instead of system level

/var Variable files, logs etc.

The filesystem using terminal is not abstracted
… and looks quite different in the terminal on linux, but is actually the same thing.

When using the terminal on Unix systems
… remember these 4 things:

Three characters with special meaning
~ The tilde character implies your home directory (/home/kursXX)
. The dot implies this directory (current)
.. The double dot implies the parent directory (“one up”)

Use tab auto-completion!

Practical / Live demo: Getting around in Linux

Green boxes and blue boxes
Green - Essential to complete the course
Blue - Convenience / Power user

• Filesystem navigation and manipulation (create, remove, move files/folders)
• Generic program execution
• Inspect / manipulate files
• Characters with special meaning and other tricks
• Build confidence!

The “prompt”:
(base) kursxx@kursxx:~$

$conda init bash

Navigating the filesystem
The same way as you would click files and folders in a file browser, you can
navigate through your filesystem in the terminal with some simple commands.

The terminal offers TAB autocompletion and a history, which makes things a lot
easier

Dots and double dots - This folder, parent folder
Tilde (~) - Refers to your home folder

Command Function Relevant Examples

cd Change directory “cd”, “cd ..”, “cd practical/”

ls List the contents of a directory “ll”, “ls -h”

pwd Shows current location “pwd”

Creating folders, copying and renaming
We can also create, remove and copy files and folders in the terminal the same way
as we would in the file manager

Rule of thumb: What file? Where?

Command Function Relevant Examples

mv Move and / or rename files / directories “mv text.txt ~/text.txt”

cp Copy files / directories “cp text.txt ~/text.txt”

mkdir Create a directory “mkdir mydir”

rm Remove files / directories “rm text.txt”, “rm -rf my_dir/”

Executing programs
Programs are usually executed in a generic way in linux terminal in the form of
programname --parameter --parameter2 --parameter3 etc...

Programs are attached to the terminal (tty) and will terminate if you close the
terminal

Command Function Relevant Examples

programname --parameter -p Run a program “ls -alh”

programname --help -h Generic help function “Ls ”

which programname Shows absolute path for shortcut “which ls”

Ctrl + C / (D) Terminate process “sleep 50” then Ctrl+C

Checkpoint 2: Let’s copy practicals and exercises!
Your practicals (files needed to complete assignments) are located on a shared disk
you only have read access to

This way, if you screw something up, you can always get a fresh copy of your
material from this disk

Let’s copy it over to your home folder:

1. “Activate” the shared folder (cd /net/software)
2. Navigate to your home folder (cd)
3. Make a practicals folder (mkdir practicals)
4. Change directory (cd practicals)
5. Copy practicals/ : cp -r /net/software/practical/1 .

We will most likely do this for every module (1,2,3,4...) for terminal-practise
(and lower wait times)

Inspecting / Editing files
More often than not, you want to inspect your files to see f.ex if your result is what
it is supposed to be. Use “less” to inspect files

Use less on big files as it reads file incrementally (needs way less memory)
Use vi (Vim) on smaller files if you want to edit something (or gedit if you prefer)

Handy vim commands:
Quit and write: :q :w :qw
Insert-mode: press <i>, esc to exit insert mode
Search: /<string>

Command Function Relevant Examples

less View contents of file “less text.txt”

vi View / edit contents of file

Piping and redirects
In the terminal you can chain together programs using the pipe-symbol to make
them work together (the output of the first is given to the second and so fourth).
command1 | command2 | command3

Command Function Relevant Examples

| Chain stdout to stdin “ll | head | grep root”

< > Redirect stdout / stdin “ll > contents.txt”

(https://www.d3noob.org/)

Chaining programs to manipulate text in the terminal
Let’s take it up a notch and start using this one some real data using inbuilt linux
text manipulation programs
cd ~/practical/1/interpro

https://interproscan-docs.readthedocs.io/en/latest/OutputFormats.html
#example-output

Command Function Relevant Examples

cat Print contents of file “cat file.txt”

cut Cut out column based on delimiter “cat file.txt | cut -f 1”

grep Search for lines containing pattern “cat file.txt | grep PATTERN”

sort Sort lines “cat file.txt | grep PATTERN | sort -c”

uniq Find unique lines “cat file.txt | sort | uniq”

head Print first X lines of lines “cat file.txt | head”

tail Print last X lines of lines “cat file.txt | tail”

wc Word count “Ls -1 | wc -l”

https://interproscan-docs.readthedocs.io/en/latest/OutputFormats.html#example-output
https://interproscan-docs.readthedocs.io/en/latest/OutputFormats.html#example-output

Maintaining control of your resources
Obviously, your VM does not have an infinite amount of resources. Sometimes it
can be handy to know how much disk space you have left, or how much memory
you are using.

If you surpass f.ex memory available, memory will get swapped to disk and your
VM will slow down immensely.

Command Function Relevant Examples

df Overview of disk space usage “df”, “df -h .”

free Overview of memory usage “free”, “free -m”

top Overview of processes running “top”

Controlling your processes
It can be confusing and tedious to have many terminal windows activate at once.
You can run processes in the background with appending “&”, detaching them
from your terminal.

You can administer / select different jobs with + / - and %

Command Function Relevant Examples

Ctrl + Z Put process to sleep in background “sleep 50” then “Ctrl + Z”

jobs List all user submitted processes “jobs”

ps List all user processes “ps” “ps u”

kill Terminate a process “kill 12345”

bg Run last process in background “bg” “bg % 3”

fg Return last process to foreground “fg” “fg %2”

Append & Run process in background “sleep 10 &”

disown Detach process from terminal “disown -a”

Getting everything to work in Linux can be frustrating

“I don’t understand, it worked last week?!”

Introduction to Anaconda

Anaconda is an environment and package manager which makes it easier to install
and manage software

Most software require certain dependencies to run. These are also installed
automatically with anaconda

You will be using Anaconda to switch between different environments which
contain different tools during this workshop

How Anaconda works

But Anaconda has a problem
… the infamous SAT-solver

… which is why sometimes, we need to call in its quicker little sibling - Mamba

(https://www.renovablesverdes.com/en/black-mamba/)

Introduction to Anaconda

• Checkpoint 3: Let’s play around a bit with Anaconda
• conda activate <env>
• conda deactivate
• conda env list
• conda list
• conda search -c <channel> <package>
• conda create -n <name> -c <channel ><package1> <package2> …
• mamba create -n <name> -c <channel ><package1> <package2> …

