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Genome variation graphs





ge
ne

ra
tio

ns

variation

genomes



ge
ne

ra
tio

ns

variation

genomes

reference genome



ge
ne

ra
tio

ns

variation

genomes

genome graph



We want a model that 
looks like DNA, but 
represents many genomes 
at the same time. Maciej Smuga-Otto 

http://www.smuga-otto.com/mso/



Variation graph



Variation graph https://vgteam.github.io/sequenceTubeMap/



Multiple sequence alignments ~ variation graphs

Christopher Lee, Catherine Grasso, Mark F. Sharlow. Multiple sequence alignment using partial order graphs. Bioinformatics, 2002.

traditional MSA

consensus sequence

positionally-matching 
regions aligned

multiple sequence 
alignment



Assembly graphs ~ variation graphs

Eugene Myers. The fragment assembly string graph. Bioinformatics, 2005.

http://plus.maths.org/content/os/issue55/features/seque
ncing/index, credit Daniel Zerbino

http://plus.maths.org/content/os/issue55/features/sequencing/index
http://plus.maths.org/content/os/issue55/features/sequencing/index


Train track graphs
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The graph is 
implicitly 
bidirectional, 
encoding both 
the forward and 
reverse 
complement.

Edges 
switching from 
the forward (+) 
to reverse (-) 
represent 
inversions.



*a fragment of the MHC



github.com/vgteam/vg



Construction
(from VCF)

POS ID  REF ALT
...

For each variant
1. cut the reference path 

around the variant
2. add the novel (ALT) 

sequence to the graph
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Construction
(from VCF)

POS ID  REF ALT
10  .   A   T
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...

For each variant
1. cut the reference path 

around the variant
2. add the novel (ALT) 

sequence to the graph



Construction
(from VCF)

POS ID  REF ALT
10  .   A   T
21  .   A   ATTAAGA
31  . TCTTT T

For each variant
1. cut the reference path 

around the variant
2. add the novel (ALT) 

sequence to the graph



      C   A   A
C     2   0   0
A     0   4   2
A     0   2   6
A     0   2   4
T     0   0   2
T     0   0   1
C     2   0   0
T     0   0   0

      T   A   A
C     0   0   0
A     0   2   2
A     3   2   4
A     4   5   4
T     6   3   3
T     4   4   1
C     2   2   2
T     2   0   0 

      G   T   T
C     0   0   0
A     0   0   0
A     3   2   1
A     4   1   0
T     2   6   3
T     0   4   8
C     0   2   5
T     0   2   4

      C   T   G
C     2   0   0
A     0   0   0
A     1   0   0
A     2   0   0
T     2   4   1
T     5   4   3
C     10  7   6
T     7   12  9

scores:
match = 2
mismatch = 2
gap_open = 3
gap_extension = 1

query:
CAAATTCT

1. fill the score matrixes
2. find the maximum score
3. trace back for alignment

Local alignment to the graph



Data model

Basic entity is a Graph:

Implemented in vg using protobuf, JSON, RDF, and GFA

Graph

Edges Nodes

Paths

Mappings



Graph

https://github.com/ekg/vg/blob/master/src/vg.proto

// *Graphs* are collections of nodes and edges.
// They can represent subgraphs of larger graphs
// or be wholly-self-sufficient.
// Protobuf memory limits of 67108864 bytes mean we typically keep the size
// of them small generating graphs as collections of smaller subgraphs.
//
message Graph {
    repeated Node node = 1; // The `Node`s that make up the graph.
    repeated Edge edge = 2; // The `Edge`s that connect the `Node`s in the graph.
    repeated Path path = 3; // A set of named `Path`s that visit sequences of oriented `Node`s.
}



Node

// *Nodes* store sequence data.
message Node {
    string sequence = 1;   // Sequence of DNA bases represented by the Node.
    string name = 2;  // A name provides an identifier.
    int64 id = 3;     // Each Node has a unique positive nonzero ID within its Graph.
}



Edge

// *Edges* describe linkages between nodes. They are bidirected, connecting the
// end (default) or start of the "from" node to the start (default) or end of
// the "to" node.
//
message Edge {
    int64 from = 1; // ID of upstream node.
    int64 to = 2;   // ID of downstream node.
    bool from_start = 3; // If the edge leaves from the 5' (start) of a node.
    bool to_end = 4; // If the edge goes to the 3' (end) of a node.
    int32 overlap = 5; // Length of overlap between the connected `Node`s.
}



Path
// Paths are walks through nodes defined by a series of `Edit`s.
// They can be used to represent:
//    - haplotypes
//    - mappings of reads, or alignments, by including edits
//    - relationships between nodes
//    - annotations from other data sources, such as:
//          genes, exons, motifs, transcripts, peaks
//
message Path {
    string name = 1; // The name of the path.
    repeated Mapping mapping = 2; // describe the order and orientation in which the Path visits `Node`s.
    bool is_circular = 3; // Set to true if the path is circular.
    int64 length = 4; // Optional length annotation for the Path.
}



Mapping

// A Mapping defines the relationship between a node in system and another entity.
// An empty edit list implies complete match, however it is preferred to specify the full edit structure.
// as it is more complex to handle special cases.
//
message Mapping {
    Position position = 1; // The position at which the first Edit, if any, in the Mapping starts. Inclusive.
    repeated Edit edit = 2; // The series of `Edit`s to transform to region in read/alt.
    int64 rank = 5; // The 1-based rank of the mapping in its containing path.
}



Position

// A position in the graph is a node, direction, and offset.
// The node is stored by ID, and the offset is 0-based and 
// counts from the start of the node in the specified orientation.
// The direction specifies which orientation of the node we are
// considering, the forward (as stored) or reverse complement.

message Position {
    int64 node_id = 1; // The Node on which the Position is.
    int64 offset = 2; // The offset into that node's sequence at which the Position occurs.
    bool is_reverse = 4; // True if we obtain the original sequence of the path by reverse complementing
    string name = 5; // If the position is used to represent a position against a reference path
}



Position // Example:
//
//     seq+        G A T T A C A
//     offset+  → 0 1 2 3 4 5 6 7
//     
//     seq-        C T A A T G T
//     offset-  → 0 1 2 3 4 5 6 7
//
// Or both at once:
//
//     offset-    7 6 5 4 3 2 1 0 ←
//     seq+        G A T T A C A
//     offset+  → 0 1 2 3 4 5 6 7



Edit
// Edits describe how to generate a new string from elements
// in the graph. To determine the new string, just walk the series of edits,
// stepping from_length distance in the basis node, and to_length in the
// novel element, replacing from_length in the basis node with the sequence.
//
//
// There are several types of Edit:
// - *matches*: from_length == to_length; sequence is empty
// - *snps*: from_length == to_length; sequence = alt
// - *deletions*: to_length == 0 && from_length > to_length; sequence is empty
// - *insertions*: from_length < to_length; sequence = alt
//
message Edit {
    int32 from_length = 1; // Length in the target/ref sequence that is removed.
    int32 to_length = 2; // Length in read/alt of the sequence it is replaced with.
    string sequence = 3; // The replacement sequence, if different from the original sequence.
}



Alignment

// Alignments link query strings, such as other genomes or reads, to Paths.
//
message Alignment {
    string sequence = 1; // The sequence that has been aligned.
    Path path = 2; // The Path that the sequence follows in the graph it has been aligned to
    string name = 3; // The name of the sequence that has been aligned. Similar to read name in BAM.
    bytes quality = 4; // The quality scores for the sequence, as values on a 0-255 scale.
    int32 mapping_quality = 5; // The mapping quality score for the alignment, in Phreds.
    int32 score = 6; // The score for the alignment, in points.
    ….



Serialization

To serialize the graph, we generate 
a stream of sub-graphs that can be 
reassembled into the whole.

Graph

Edges Nodes

Paths

Mappings

Subgraph n

Edges Nodes

Paths

Mappings

output



How to resequence using vg
Import a graph: vg construct / vg view

Index it: vg index

Query it: vg find

Sample it: vg sim

Map to it: vg map

Call variants: vg call

Build a graph: vg msga



Components of the vg toolchain

- Data model
- https://github.com/vgteam/vg/blob/master/src/vg.proto

- VG C++ API
- https://github.com/vgteam/vg/blob/master/src/vg.hpp

- XG (graph index)
- https://github.com/vgteam/vg/blob/master/src/xg.hpp

- GCSA2 (sequence path index)
- https://github.com/jltsiren/gcsa2



vg construct

#CHROM  POS     REF     ALT
x       9       G       A  
x       10      C       T  
x       14      G       A  
x       34      T       A  
x       39      T       A  

tiny.fa

tiny.vcf.gz

tiny.vg

vg construct \
    -v tiny/tiny.vcf.gz \
    -r tiny/tiny.fa >tiny.vg



vg index
tiny.vg

vg index tiny.vg \
    -x tiny.xg \
    -g tiny.gcsa -k 16

vg kmers -gk 16 tiny.vg | head -50 
ATTTGGAAATTTTCTG        2:0     G       G       9:10
GTTTGGAAATTTTCTG        3:0     G       G       9:10
CAAATAAGATTTGAAA        1:0     #       A       9:2
GTTTGAAAATTTTCTG        3:0     G       G       9:10
ATTTGAAAATTTTCTG        2:0     G       G       9:10
GCTTGAAAATTTTCTG        3:0     G       G       9:10
TAAGATTTGAAAATTT        1:4     A       T       9:6
GCTTGGAAATTTTCTG        3:0     G       G       9:10
AATAAGATTTGAAAAT        1:2     A       T       9:4
CCTTATTTG$$$$$$$        3:-0    A,G     $       17:7
ACTTGAAAATTTTCTG        2:0     G       G       9:10
CTTGAAAATTTTCTGG        5:0     A,G     A       9:11
CAAATAAGATTTGGAA        1:0     #       A       9:2
CTTGGAAATTTTCTGG        5:0     A,G     A       9:11
AAATAAGATTTGAAAA        1:1     C       T       9:3



vg find

vg find -x tiny.xg \
    -p x:20-25 -c 1 \
   | vg view -d -

Query the nodes around x:20-25 
in the reference path “x”.

vg find -g tiny.gcsa \
    -S TCCAGAAAATTTTCAA
→ 9:-7

Query the position of a particular 
sequence in the GCSA2 index.



vg sim Use a haplotype representing some variants 
relative to the tiny.vg to build a new graph:

vg sim -l 50 -n 10 -s 1337 -x truth.xg >truth.reads

vg msga -g tiny.vg -Nz \
    -s CAAATAAGGTTTGCAAATTTTCTGGAGTACTATAATATTCCAACTCTCTG \
    >truth.vg

We can then use it as a generative model and sample reads from it:



{
  "sequence": "CAGAGAGTTGGTATATTATAGAACTCCAGAAAATTTCCAAACCTTATTTG",
  "identity": 1,
  "path": {
    "mapping": [
      {
        "position": {
          "node_id": 15,
          "is_reverse": true
        },
        "edit": [
          {
            "from_length": 11,
            "to_length": 11
          }
        ],
        "rank": 1
      },
      {
        "position": {
          "node_id": 13,
          "is_reverse": true
        },
        "edit": [
          {
            "from_length": 1,
            "to_length": 1
          }
       …..

vg map
vg map -x tiny.xg -g tiny.gcsa -T truth.reads >aln.gam

vg view -a aln.gam



alignment viz

vg view -dA aln.gam tiny.vg

We can also visualize alignments against the graph: 

Blue represents perfect match.
Yellow represents a mismatch.





Day 2



Introduction to viral quasispecies



Subcommands
Introduce subcommands: surject, vectorize, msga, prune

Interleave: explain subcommands and have participants try them on toy examples 
from previous day



Practical: five virus mix



Day 3



Introduction to drug resistance in bacteria



Practical 1: Build a single-gene graph
● build a gene-model for gyrA and map reads to it for a handful of samples. 
● Infer the sequence of this gene in each sample (vg call/mod) 



Practical 2: Gene presence via assembly 
● Assembly (minia3) of each sample, thread mcr-1/2/3 gene sequences through 

it to determine presence/absence of this colistin-resistance gene



Day 4





vg overview and practical
One slide per interesting subcommand, describing general idea:

Construct, view, index, find, sim, map, mpmap, surject, msga, mod, 
prune, call, augment, vectorize, pack, chunk, deconstruct, snarls, explode, 
concat, simplify, translate

One slide showing an example use case.

Day 1: construct, view, index, find, sim, map
Day 2: surject, vectorize, msga, prune
Day 3: call, mod, pack, augment, chunk, explode
Day 4: snarls, mpmap, simplify, translate





realigned to variation graph

raw alignments

realign to:

When does a linear reference fail?





Variant calling on the graph

Read alignment
- GAM format
- from vg map

Graph Pileup
- VG pileup format
- from vg pileup

Augmented graph

a
a
a
c
a

c a

Sample graph

Variants
 - VG format

- from vg call

Glenn Hickey, Adam Novak, Benedict Paten, Mike Lin



Whole human genome analysis pipeline

We submitted the a whole human genome analysis using variation reference 
methods as part of the PrecisionFDA resequencing competition. (May 2016.)

We did not win... but we did get a star for:



Whole human genome analysis pipeline

We submitted the a whole human genome analysis using variation reference 
methods as part of the PrecisionFDA resequencing competition. (May 2016.)

We did not win... but we did get a star for:



A community evalution of reference graphs (in MHC)


