
Computational
Pangenomics
#CPANG18

Day 1 (March 6, 2018)

Tobias Marschall, Erik Garrison, and Jordan Eizenga

Genome variation graphs

ge
ne

ra
tio

ns

variation

genomes

ge
ne

ra
tio

ns

variation

genomes

reference genome

ge
ne

ra
tio

ns

variation

genomes

genome graph

We want a model that
looks like DNA, but
represents many genomes
at the same time. Maciej Smuga-Otto

http://www.smuga-otto.com/mso/

Variation graph

Variation graph https://vgteam.github.io/sequenceTubeMap/

Multiple sequence alignments ~ variation graphs

Christopher Lee, Catherine Grasso, Mark F. Sharlow. Multiple sequence alignment using partial order graphs. Bioinformatics, 2002.

traditional MSA

consensus sequence

positionally-matching
regions aligned

multiple sequence
alignment

Assembly graphs ~ variation graphs

Eugene Myers. The fragment assembly string graph. Bioinformatics, 2005.

http://plus.maths.org/content/os/issue55/features/seque
ncing/index, credit Daniel Zerbino

http://plus.maths.org/content/os/issue55/features/sequencing/index
http://plus.maths.org/content/os/issue55/features/sequencing/index

Train track graphs

forward

reverse

+/+

+/-

-/+

-/-

The graph is
implicitly
bidirectional,
encoding both
the forward and
reverse
complement.

Edges
switching from
the forward (+)
to reverse (-)
represent
inversions.

*a fragment of the MHC

github.com/vgteam/vg

Construction
(from VCF)

POS ID REF ALT
...

For each variant
1. cut the reference path

around the variant
2. add the novel (ALT)

sequence to the graph

Construction
(from VCF)

POS ID REF ALT
10 . A T
...

For each variant
1. cut the reference path

around the variant
2. add the novel (ALT)

sequence to the graph

Construction
(from VCF)

POS ID REF ALT
10 . A T
21 . A ATTAAGA
...

For each variant
1. cut the reference path

around the variant
2. add the novel (ALT)

sequence to the graph

Construction
(from VCF)

POS ID REF ALT
10 . A T
21 . A ATTAAGA
31 . TCTTT T

For each variant
1. cut the reference path

around the variant
2. add the novel (ALT)

sequence to the graph

 C A A
C 2 0 0
A 0 4 2
A 0 2 6
A 0 2 4
T 0 0 2
T 0 0 1
C 2 0 0
T 0 0 0

 T A A
C 0 0 0
A 0 2 2
A 3 2 4
A 4 5 4
T 6 3 3
T 4 4 1
C 2 2 2
T 2 0 0

 G T T
C 0 0 0
A 0 0 0
A 3 2 1
A 4 1 0
T 2 6 3
T 0 4 8
C 0 2 5
T 0 2 4

 C T G
C 2 0 0
A 0 0 0
A 1 0 0
A 2 0 0
T 2 4 1
T 5 4 3
C 10 7 6
T 7 12 9

scores:
match = 2
mismatch = 2
gap_open = 3
gap_extension = 1

query:
CAAATTCT

1. fill the score matrixes
2. find the maximum score
3. trace back for alignment

Local alignment to the graph

Data model

Basic entity is a Graph:

Implemented in vg using protobuf, JSON, RDF, and GFA

Graph

Edges Nodes

Paths

Mappings

Graph

https://github.com/ekg/vg/blob/master/src/vg.proto

// *Graphs* are collections of nodes and edges.
// They can represent subgraphs of larger graphs
// or be wholly-self-sufficient.
// Protobuf memory limits of 67108864 bytes mean we typically keep the size
// of them small generating graphs as collections of smaller subgraphs.
//
message Graph {
 repeated Node node = 1; // The `Node`s that make up the graph.
 repeated Edge edge = 2; // The `Edge`s that connect the `Node`s in the graph.
 repeated Path path = 3; // A set of named `Path`s that visit sequences of oriented `Node`s.
}

Node

// *Nodes* store sequence data.
message Node {
 string sequence = 1; // Sequence of DNA bases represented by the Node.
 string name = 2; // A name provides an identifier.
 int64 id = 3; // Each Node has a unique positive nonzero ID within its Graph.
}

Edge

// *Edges* describe linkages between nodes. They are bidirected, connecting the
// end (default) or start of the "from" node to the start (default) or end of
// the "to" node.
//
message Edge {
 int64 from = 1; // ID of upstream node.
 int64 to = 2; // ID of downstream node.
 bool from_start = 3; // If the edge leaves from the 5' (start) of a node.
 bool to_end = 4; // If the edge goes to the 3' (end) of a node.
 int32 overlap = 5; // Length of overlap between the connected `Node`s.
}

Path
// Paths are walks through nodes defined by a series of `Edit`s.
// They can be used to represent:
// - haplotypes
// - mappings of reads, or alignments, by including edits
// - relationships between nodes
// - annotations from other data sources, such as:
// genes, exons, motifs, transcripts, peaks
//
message Path {
 string name = 1; // The name of the path.
 repeated Mapping mapping = 2; // describe the order and orientation in which the Path visits `Node`s.
 bool is_circular = 3; // Set to true if the path is circular.
 int64 length = 4; // Optional length annotation for the Path.
}

Mapping

// A Mapping defines the relationship between a node in system and another entity.
// An empty edit list implies complete match, however it is preferred to specify the full edit structure.
// as it is more complex to handle special cases.
//
message Mapping {
 Position position = 1; // The position at which the first Edit, if any, in the Mapping starts. Inclusive.
 repeated Edit edit = 2; // The series of `Edit`s to transform to region in read/alt.
 int64 rank = 5; // The 1-based rank of the mapping in its containing path.
}

Position

// A position in the graph is a node, direction, and offset.
// The node is stored by ID, and the offset is 0-based and
// counts from the start of the node in the specified orientation.
// The direction specifies which orientation of the node we are
// considering, the forward (as stored) or reverse complement.

message Position {
 int64 node_id = 1; // The Node on which the Position is.
 int64 offset = 2; // The offset into that node's sequence at which the Position occurs.
 bool is_reverse = 4; // True if we obtain the original sequence of the path by reverse complementing
 string name = 5; // If the position is used to represent a position against a reference path
}

Position // Example:
//
// seq+ G A T T A C A
// offset+ → 0 1 2 3 4 5 6 7
//
// seq- C T A A T G T
// offset- → 0 1 2 3 4 5 6 7
//
// Or both at once:
//
// offset- 7 6 5 4 3 2 1 0 ←
// seq+ G A T T A C A
// offset+ → 0 1 2 3 4 5 6 7

Edit
// Edits describe how to generate a new string from elements
// in the graph. To determine the new string, just walk the series of edits,
// stepping from_length distance in the basis node, and to_length in the
// novel element, replacing from_length in the basis node with the sequence.
//
//
// There are several types of Edit:
// - *matches*: from_length == to_length; sequence is empty
// - *snps*: from_length == to_length; sequence = alt
// - *deletions*: to_length == 0 && from_length > to_length; sequence is empty
// - *insertions*: from_length < to_length; sequence = alt
//
message Edit {
 int32 from_length = 1; // Length in the target/ref sequence that is removed.
 int32 to_length = 2; // Length in read/alt of the sequence it is replaced with.
 string sequence = 3; // The replacement sequence, if different from the original sequence.
}

Alignment

// Alignments link query strings, such as other genomes or reads, to Paths.
//
message Alignment {
 string sequence = 1; // The sequence that has been aligned.
 Path path = 2; // The Path that the sequence follows in the graph it has been aligned to
 string name = 3; // The name of the sequence that has been aligned. Similar to read name in BAM.
 bytes quality = 4; // The quality scores for the sequence, as values on a 0-255 scale.
 int32 mapping_quality = 5; // The mapping quality score for the alignment, in Phreds.
 int32 score = 6; // The score for the alignment, in points.
 ….

Serialization

To serialize the graph, we generate
a stream of sub-graphs that can be
reassembled into the whole.

Graph

Edges Nodes

Paths

Mappings

Subgraph n

Edges Nodes

Paths

Mappings

output

How to resequence using vg
Import a graph: vg construct / vg view

Index it: vg index

Query it: vg find

Sample it: vg sim

Map to it: vg map

Call variants: vg call

Build a graph: vg msga

Components of the vg toolchain

- Data model
- https://github.com/vgteam/vg/blob/master/src/vg.proto

- VG C++ API
- https://github.com/vgteam/vg/blob/master/src/vg.hpp

- XG (graph index)
- https://github.com/vgteam/vg/blob/master/src/xg.hpp

- GCSA2 (sequence path index)
- https://github.com/jltsiren/gcsa2

vg construct

#CHROM POS REF ALT
x 9 G A
x 10 C T
x 14 G A
x 34 T A
x 39 T A

tiny.fa

tiny.vcf.gz

tiny.vg

vg construct \
 -v tiny/tiny.vcf.gz \
 -r tiny/tiny.fa >tiny.vg

vg index
tiny.vg

vg index tiny.vg \
 -x tiny.xg \
 -g tiny.gcsa -k 16

vg kmers -gk 16 tiny.vg | head -50
ATTTGGAAATTTTCTG 2:0 G G 9:10
GTTTGGAAATTTTCTG 3:0 G G 9:10
CAAATAAGATTTGAAA 1:0 # A 9:2
GTTTGAAAATTTTCTG 3:0 G G 9:10
ATTTGAAAATTTTCTG 2:0 G G 9:10
GCTTGAAAATTTTCTG 3:0 G G 9:10
TAAGATTTGAAAATTT 1:4 A T 9:6
GCTTGGAAATTTTCTG 3:0 G G 9:10
AATAAGATTTGAAAAT 1:2 A T 9:4
CCTTATTTG$$$$$$$ 3:-0 A,G $ 17:7
ACTTGAAAATTTTCTG 2:0 G G 9:10
CTTGAAAATTTTCTGG 5:0 A,G A 9:11
CAAATAAGATTTGGAA 1:0 # A 9:2
CTTGGAAATTTTCTGG 5:0 A,G A 9:11
AAATAAGATTTGAAAA 1:1 C T 9:3

vg find

vg find -x tiny.xg \
 -p x:20-25 -c 1 \
 | vg view -d -

Query the nodes around x:20-25
in the reference path “x”.

vg find -g tiny.gcsa \
 -S TCCAGAAAATTTTCAA
→ 9:-7

Query the position of a particular
sequence in the GCSA2 index.

vg sim Use a haplotype representing some variants
relative to the tiny.vg to build a new graph:

vg sim -l 50 -n 10 -s 1337 -x truth.xg >truth.reads

vg msga -g tiny.vg -Nz \
 -s CAAATAAGGTTTGCAAATTTTCTGGAGTACTATAATATTCCAACTCTCTG \
 >truth.vg

We can then use it as a generative model and sample reads from it:

{
 "sequence": "CAGAGAGTTGGTATATTATAGAACTCCAGAAAATTTCCAAACCTTATTTG",
 "identity": 1,
 "path": {
 "mapping": [
 {
 "position": {
 "node_id": 15,
 "is_reverse": true
 },
 "edit": [
 {
 "from_length": 11,
 "to_length": 11
 }
],
 "rank": 1
 },
 {
 "position": {
 "node_id": 13,
 "is_reverse": true
 },
 "edit": [
 {
 "from_length": 1,
 "to_length": 1
 }
 …..

vg map
vg map -x tiny.xg -g tiny.gcsa -T truth.reads >aln.gam

vg view -a aln.gam

alignment viz

vg view -dA aln.gam tiny.vg

We can also visualize alignments against the graph:

Blue represents perfect match.
Yellow represents a mismatch.

Day 2

Introduction to viral quasispecies

Subcommands
Introduce subcommands: surject, vectorize, msga, prune

Interleave: explain subcommands and have participants try them on toy examples
from previous day

Practical: five virus mix

Day 3

Introduction to drug resistance in bacteria

Practical 1: Build a single-gene graph
● build a gene-model for gyrA and map reads to it for a handful of samples.
● Infer the sequence of this gene in each sample (vg call/mod)

Practical 2: Gene presence via assembly
● Assembly (minia3) of each sample, thread mcr-1/2/3 gene sequences through

it to determine presence/absence of this colistin-resistance gene

Day 4

vg overview and practical
One slide per interesting subcommand, describing general idea:

Construct, view, index, find, sim, map, mpmap, surject, msga, mod,
prune, call, augment, vectorize, pack, chunk, deconstruct, snarls, explode,
concat, simplify, translate

One slide showing an example use case.

Day 1: construct, view, index, find, sim, map
Day 2: surject, vectorize, msga, prune
Day 3: call, mod, pack, augment, chunk, explode
Day 4: snarls, mpmap, simplify, translate

realigned to variation graph

raw alignments

realign to:

When does a linear reference fail?

Variant calling on the graph

Read alignment
- GAM format
- from vg map

Graph Pileup
- VG pileup format
- from vg pileup

Augmented graph

a
a
a
c
a

c a

Sample graph

Variants
 - VG format

- from vg call

Glenn Hickey, Adam Novak, Benedict Paten, Mike Lin

Whole human genome analysis pipeline

We submitted the a whole human genome analysis using variation reference
methods as part of the PrecisionFDA resequencing competition. (May 2016.)

We did not win... but we did get a star for:

Whole human genome analysis pipeline

We submitted the a whole human genome analysis using variation reference
methods as part of the PrecisionFDA resequencing competition. (May 2016.)

We did not win... but we did get a star for:

A community evalution of reference graphs (in MHC)

