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Wrap up of day 3
New vg commands: index (sorting), explode, chunk, pack.

Bacterial pangenes and pangenomes.



vg index -a (start-node sorted alignment index)
vg construct -r small/x.fa -v small/x.vcf.gz >x.vg
vg index -x x.xg -g x.gcsa -k 16 x.vg
vg map -d x -G <(vg sim -n 100 -e 0.01 -i 0.005 -l 50 -a -x x.xg) >aln.gam
vg index -d aln.gam.idx -a aln.gam
vg index -d aln.gam.idx -D



Sorting alignments (by start node id)

vg index -A -d aln.gam.idx | vg view -a -
vg index -A -d aln.gam.idx >aln.sort.gam
vg view -a aln.sort.gam | jq '.path.mapping[0].position.node_id' | head

16
18
20
20
20
22
16
16
32
32
….



vg index -N (node to alignment index) 

vg index -N -d aln.sort.gam.idx aln.sort.gam
vg find -d aln.sort.gam.idx -o 24 | vg view -a - | wc -l
vg find -d aln.sort.gam.idx -o 23 | vg view -a - | wc -l
vg find -x x.xg -n 24 -c 1 >m.vg
vg view -dA  <(vg find -d aln.sort.gam.idx -A m.vg) <(vg find -x x.xg -G 
<(vg find -d aln.sort.gam.idx -A m.vg))



vg explode (break graphs apart)

vg mod -pl 16 -e 3 x.vg | vg explode - parts
parts/component0.vg     x
parts/component1.vg     x
parts/component2.vg     x
parts/component3.vg     x
parts/component4.vg     x
parts/component5.vg
parts/component6.vg     x
parts/component7.vg     x
parts/component8.vg     x
parts/component9.vg     x



vg chunk (break graphs into pieces)

vg chunk -x x.xg -n 10
ls chunk*

chunk_0_ids_1_23.vg                 
chunk_1_ids_21_46.vg  
chunk_3_ids_66_90.vg   
chunk_5_ids_109_133.vg  
chunk_7_ids_153_177.vg  
chunk_9_ids_197_210.vg
chunk_0_ids_1_5_trace_annotate.txt  
chunk_2_ids_43_68.vg  
chunk_4_ids_88_112.vg  
chunk_6_ids_131_155.vg  
chunk_8_ids_175_200.vg



vg pack (graph coverage vectors)

vg pack -x x.xg -g aln.gam -d

seq.pos  node.id  node.offset  coverage
0        1        0            0
1        1        1            0
2        1        2            1
3        1        3            0
4        1        4            1
5        1        5            1
6        1        6            2
7        1        7            2
8        2        0            0
9        3        0            2
10       4        0            2
11       5        0            0
12       6        0            2
…



Questions



How confident are you at 
building your own workflows 
within vg framework?



How confident are you creating 
graphs using vg msga?



How confident are you at 
modifying graphs using vg mod?



How confident are you working 
with the JSON output of vg?



How confident are you to use vg 
on assembly graphs?





vg results



https://www.biorxiv.org/content/early/2017/12/15/234856











A human pangenome
from 5000 haplotypes

The 1000G phase 3 
release encodes ~80M 
variants. We build a 
graph from it + the 
GRCh37 reference, 
and then index this for 
mapping (~70G total).



ROC of reads simulated from NA24385’s haplotypes

We simulate reads from the 
parentally-phased haplotypes of 
NA24385 (HG002), for which we have a 
“truth set” established by the NIST 
Genome in a Bottle project.

We then map the simulated reads using 
several different reference systems:

1) GRCh37 (using bwa mem)
2) GRCh37 (using vg)
3) 1000G pangenome (using vg)



ROC of reads simulated from NA24385’s haplotypes



Allele observation bias in real NA24385 data

At “true” heterozygous variants in NA24385, we count how many reads map 
to the reference and to the alternate over various allele lengths. We see no 
bias when mapping to allels in the 1000G graph.



A region of a yeast genome variation graph corresponding to the start of the 
subtelomeric region on the left arm of chromosome 9 in a multiple alignment of 
de novo assembled strains from Yue 2017.

Yeast pangenome



Simulation from SK1 strain 

We simulate reads from SK1, and 
then map them back to different 
versions of the pangenome.

The pangenome outperforms the 
linear reference (S288c), but graph 
complexity limits our overall 
performance.



Mapping real data to the yeast pangenome

Here we map data from 12 Cerevisiae 
strains against our yeast pangenome 
and a linear reference for S288c.

74.6% of reads map with equal scores 
to both the pangenome and linear 
references, 24.9% map better to the 
pangenome, and only 0.5% map 
better to the linear reference.



vg as a metagenomics tool
We can avoid some common problems in metagenomics resequencing 
applications by using vg to align reads against an assembly graph.



The worst metagenome 
from the coolest place 

Artic fresh water viromes (Svalbard viral 
metagenome)

https://www.ebi.ac.uk/ena/data/view/PRJ
EB5265 # study
https://www.ebi.ac.uk/ena/data/view/ERS
396648 # specific data, from Svalbard
http://advances.sciencemag.org/content/
1/5/e1400127 # paper



Pipeline
Reads -> minia3 -> contigs

The contig output from minia3 encodes a graph and may be converted to GFA 
using bcalm2 scripts!

Use bwa mem to align a subset of the reads to the contigs.

Use vg to align the same subset of the reads to the graph.



Raw assembly
There are very tangled 
portions of this graph that 
make alignment against it 
very hard.

As a compromise I pruned 
nodes with greater than 
in-degree 8 to make a 
smoother graph.





Smoothed graph
This is dramatically easier to 
index and align against.

Note greater number of short 
contigs (bottom portion).





Results: minia3 assembly k=51 abundance=3

This on 100k of 200k reads which were held 
out of the assembly.

Mean score with vg: 94.83228
Mean score with bwa: 86.94674

Mapping rate vg: 0.96128
Mapping rate bwa: 0.96096

The mapping rate is similar, the difference 
is that vg can map almost all the reads 
matching the assembly graph full length.
This is more extreme with shorter k in the 
assembly.



vg call



Variant calling on the graph

Read alignment
- GAM format
- from vg map

Graph Pileup
- VG pileup format
- from vg pileup

Augmented graph

a
a
a
c
a

c a

Sample graph

Variants
 - VG format

- from vg call

Glenn Hickey, Adam Novak, Benedict Paten, Mike Lin



Genotyper



In-graph genotyping using vg

Reference 
Graph

Augmented
Graph

Allele
Supports

Superbubbles

Genotype
Likelihoods Genotypes

Aligned
Reads

Translation
Updated 

Reference 
Graph



Reference genome

Simulated genomes

Alignments to reference

Simulated reads

In-graph genotyping using vg



Augmented graph The alignments have been fully 
embedded in the graph as paths.



Genotyper output ~ graph gVCF

The genotyper considers support for every bubble 
based on embedded paths and emits genotypes as 
“Locus” records that are each a set of alleles 
represented as paths relative to the base graph.



Implementation details: 
Aligning against generic sequence graphs



      C   A   A
C     2   0   0
A     0   4   2
A     0   2   6
A     0   2   4
T     0   0   2
T     0   0   1
C     2   0   0
T     0   0   0

      T   A   A
C     0   0   0
A     0   2   2
A     3   2   4
A     4   5   4
T     6   3   3
T     4   4   1
C     2   2   2
T     2   0   0 

      G   T   T
C     0   0   0
A     0   0   0
A     3   2   1
A     4   1   0
T     2   6   3
T     0   4   8
C     0   2   5
T     0   2   4

      C   T   G
C     2   0   0
A     0   0   0
A     1   0   0
A     2   0   0
T     2   4   1
T     5   4   3
C     10  7   6
T     7   12  9

scores:
match = 2
mismatch = 2
gap_open = 3
gap_extension = 1

query:
CAAATTCT

1. fill the score matrixes
2. find the maximum score
3. trace back for alignment

No cycles allowed in string to DAG alignment



k-DAGification
This graph has multiple nested 
loops.

We will unroll this graph by 
copying the strongly connected 
component until any sequence 
of up to length k can be found in 
the DAG.

*Same graph 
visualized with and 
without sequences.



k-DAGification example
k=1 / k=2



k-DAGification example
k=4



k-DAGification example
k=10



k-DAGification example
k=25



Implementation details: GCSA2



Indexing path sequences: GCSA2

Jouni Sirén http://jltsiren.kapsi.fi/files/sendai2016.pdf



Jouni Sirén http://jltsiren.kapsi.fi/files/sendai2016.pdf



Jouni Sirén http://jltsiren.kapsi.fi/files/sendai2016.pdf



Jouni Sirén http://jltsiren.kapsi.fi/files/sendai2016.pdf



Jouni Sirén http://jltsiren.kapsi.fi/files/sendai2016.pdf



Jouni Sirén http://jltsiren.kapsi.fi/files/sendai2016.pdf



Jouni Sirén http://jltsiren.kapsi.fi/files/sendai2016.pdf



MEMs in vg
By including an LCP array, we can find SMEMs in a linear scan through the 
sequence in the same way as we do with linear references. 

vg find -M ACCGTTAGAGTCAG -g h.gcsa       

[["ACC",["1:-32"]],["CCGTTAG",["1:5"]],["GTTAGAGT",["1:19"]],["TAGAGTCAG",["1:40"]]]

ACGTGCCGTTAGCCAGTGGGTTAGAGTATCGATACAACTATAGAGTCAGAGCA

ACCGTTAGAGTCAG

ACC

 CCGTTAG

   GTTAGAGT

     TAGAGTCAG

Sketch: backward search until we no longer 
match. Then execute parent() on the suffix tree 
node corresponding last non-empty BWT range 
to get a new range. Then continue backward 
searching to find the next SMEM.



Implementation details: XG



Succinct variation graphs (xg)
A succinct data structure

- uses an amount of space close to the minimum information-theoretic lower bound,
- but does so while allowing efficient queries!

Core concept is the rank/select dictionary, a bit vector, e.g.

That (given q ∈ {0,1}) supports functions:

1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1



xg: nodes and edges

CAAA TAAG G A C T TTG G A AAAT TTTC
1000 1000 1 1 1 1 100 1 1 1000 1000

label
nodes

id

nodes

from
...

edges

to
...

1 2 2 3 4 3 5 6 4 5 6 5 7 6 7 7 8 9 8 10 9 10 10 11 11
1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0  1 0  1  0  1
1 2 1 3 2 4 2 5 3 4 6 3 4 7 5 6 8 7 9 7 10 8 9 11 10
1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1  0 0 1  0

1    2    3 4 5 6 7   8 9 10   11

Graph storage is straightforward, 
and complicated only be the fact 
that nodes have variable length.

The from and to integer vectors store [id][edges from or to id...][id+1][edges]



xg: positional paths

1111011000011001101100111members
paths* (*for each path)

1 2 3 5 7 8 10 11ordered 
node ids

node 
starts

1000100011100110001000

a collection of nodes and edges--- we can use 
this structure alone for annotating subgraphs.

In conjunction these structures allow 
navigating the graph using path-relative 
coordinates.

We can find the node at a particular 
path position by rank_1(i) on the node 
starts bit vector, and we can find the 
position of a node in a path using the 
ordered node ids, which is indexed 
using a wavelet tree.

0 4 8 9 10 13 14 18node path 
offsets


