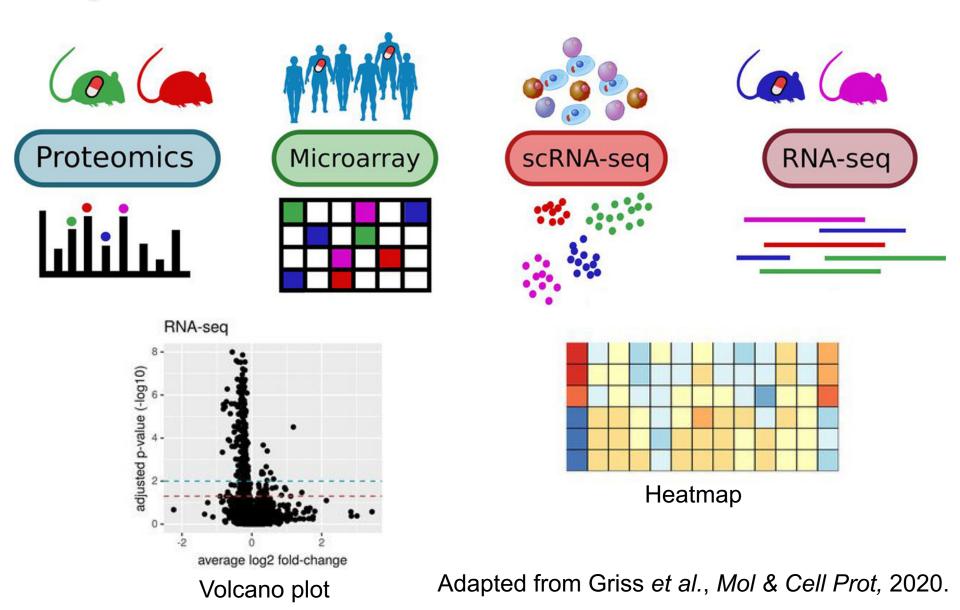
STRING and Cytoscape for proteomics data analysis

Nadezhda T. Doncheva

nadezhda.doncheva@cpr.ku.dk

Integrative Biological Interpretation using Proteomics 2022 Instituto Gulbenkian de Ciência, Oeiras, Portugal June 20 – June 24, 2022

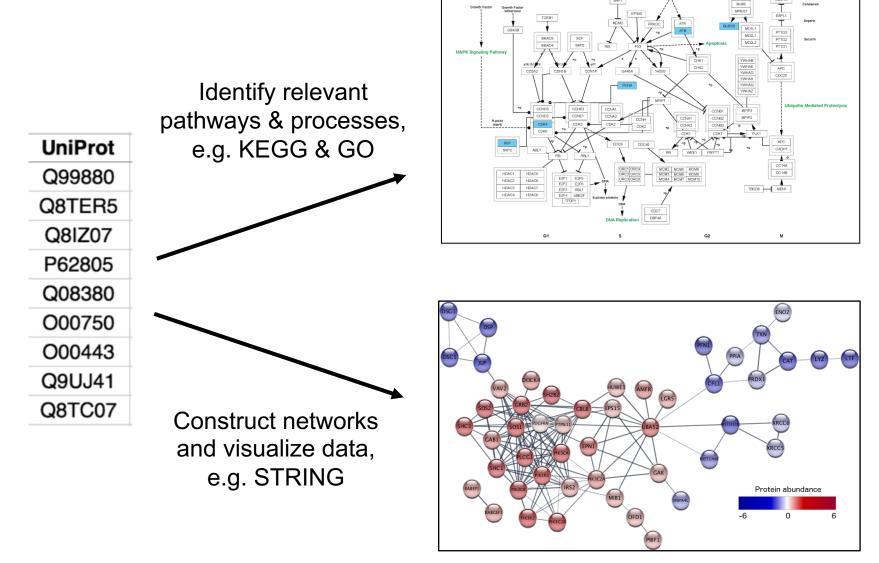


Intended learning outcomes

- Describe types of biological networks and give at least one example for such a network and where to find it
- Characterize a network in terms of what it represents
- Perform functional enrichment on a list of genes
- Analyze (your) high-throughput data using Cytoscape
 - Import your data into Cytoscape using the stringApp
 - Master network layouts and data visualization
 - Perform clustering and enrichment analyses
- Know where to find relevant documentation and tutorials

High-throughput technologies

A typical table with data

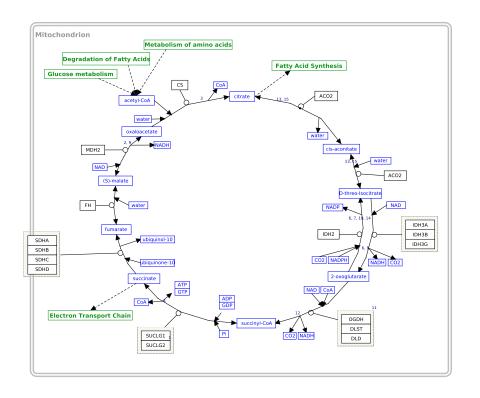

- Temporal analysis by mass spectrometry of the proteome of neuroblastoma cells in response to nerve growth factor (NGF)
- Identification of 78 proteins that interact with tropomyosin-related kinase A (TrkA) upon NGF stimulation

	А	В	С	D	G	J
1	UniProt	Gene name	Peptides	Sequence coverage [%]	5 min log ratio	10 min log ratio
2	Q99880	HIST1H2BL	5	35.7	-2.66	-2.66
3	Q8TER5	ARHGEF40	34	28.3	1.95	1.56
4	Q8IZ07	ANKRD13A	12	19.2	1.07	1.08
5	P62805	HIST1H4A	11	57.3	-2.31	-1.39
6	Q08380	LGALS3BP	14	28.2	-3.16	-2.98
7	O00750	PIK3C2B	35	24.2	2.21	2.31
8	O00443	PIK3C2A	29	17.8	1.13	1.26
9	Q9UJ41	RABGEF1	6	6.5	0.67	1.08
10	Q8TC07	TBC1D15	12	19.1	0.43	1.06

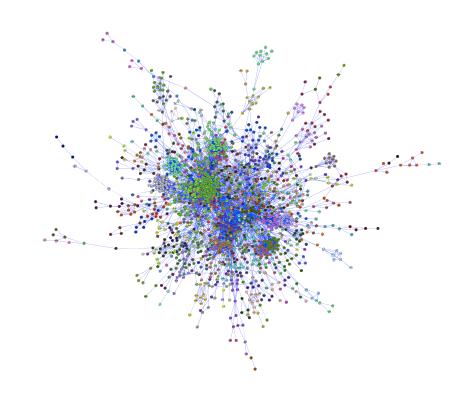
Emdal et al., Science Signaling, 2015.

From gene lists to networks

What are networks?


- Consist of nodes (vertices, circles) and edges (links, lines)
- Represent relationships between entities
- Networks are everywhere...
 - Social networks
 - The power grid
 - The internet

- Can you think of 1 or 2 examples for networks in your field?



Types of biological networks

- **Pathways**: metabolic, signaling, regulatory, etc.
- For example KEGG

- Interaction networks: proteinprotein, protein-drug, etc.
- For example STRING


Sources of biological networks

- There are hundreds of different interaction databases
- ightarrow It depends on your biological question and analysis plan

But know what you are getting...

- Interaction networks: broad coverage / lower resolution
 - STRING (<u>https://string-db.org/</u>)
 - IntAct (<u>https://www.ebi.ac.uk/intact/</u>)
 - BioGrid (<u>https://thebiogrid.org/</u>)
- **Pathways**: higher resolution / limited coverage
 - KEGG (<u>https://www.kegg.jp/kegg/pathway.html</u>)
 - Reactome (<u>https://reactome.org/</u>)
 - WikiPathways (<u>https://www.wikipathways.org/</u>)

STRING exercise 1 (15 min)

https://jensenlab.org/training/string/eubic/

In this exercise, we use the STRING database to create a network for one protein of interest and explore the different visual representation and the supporting evidence of the interactions.

Exercise 1.1: Single protein query

Question 1: Why are there multiple lines connecting the same two proteins?

Exercise 1.2: Visual representations

Question 2: Which information is shown for the edges in each representation?

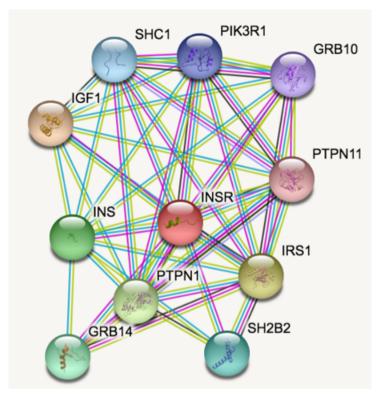
Exercise 1.3: Evidence viewers

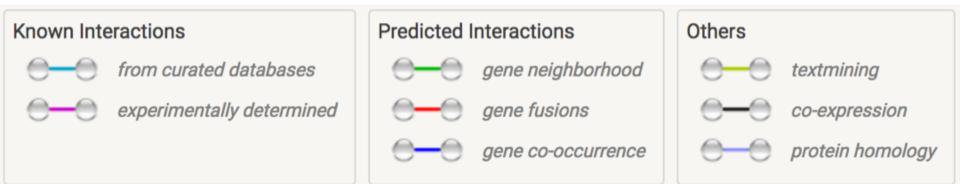
Question 3: Which types of evidence support the interaction between insulin receptor (INSR) and insulin receptor substrate 1 (IRS1)?

Question 4: Which type of evidence gives the largest contribution to the confidence score 0.999?

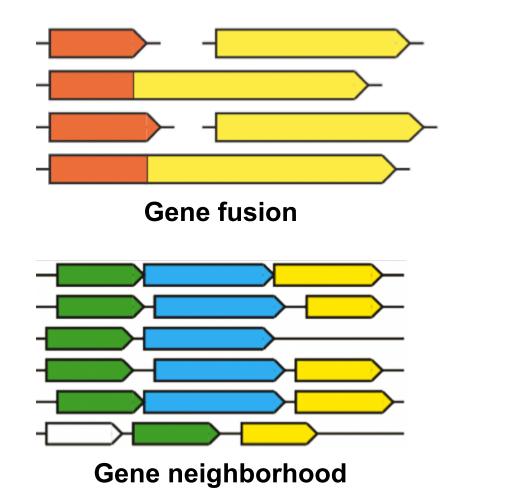
Question 5: Which types of experiments support this interaction?

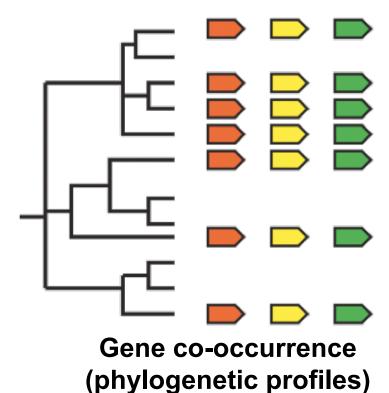
STRING


→ Integration of known and predicted functional protein associations


- Collect multiple types of evidence for known associations
- Predict new associations
- Transfer across species
- Assign confidence score to each association

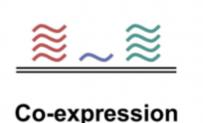
Joint collaboration between the groups of Christian von Mering (University of Zurich), Lars Juhl Jensen (University of Copenhagen), and Peer Bork (EMBL Heidelberg)


STRING evidence channels



Predictions from genomic context

14,094 organisms



Korbel et al., Nature Biotechnology, 2004.

Experimental evidence

Pair-wise interactions from experiments in curated databases like IntAct & BioGrid

Can be any type of *biochemical, biophysical or genetic interaction, like pull-down experiments* Look for consistent similarities between expression profiles in many different conditions Mainly RNA-based expression data + a bit of protein expression

"Higher-level" knowledge

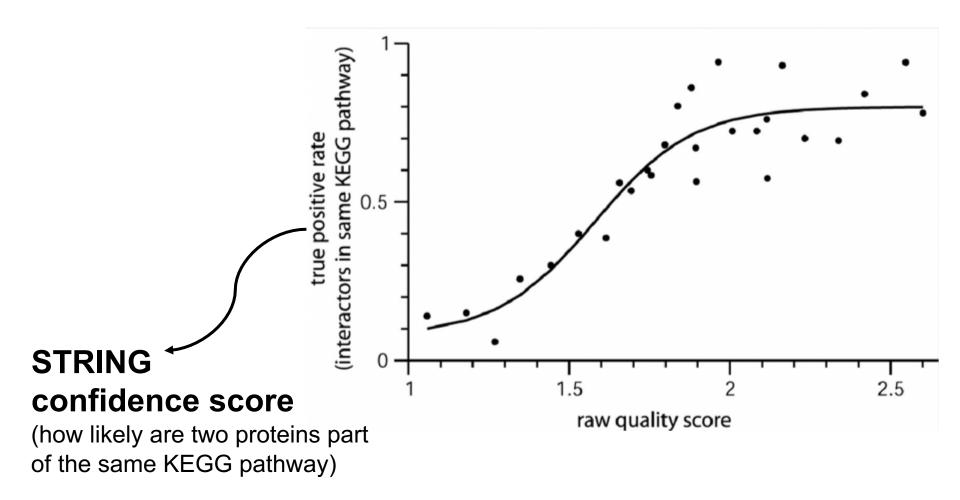
Text mining

Also known as *Databases* Curated pathway databases like KEGG & Reactome

Co-occurrence text mining for functional associations Natural language processing for physical interactions

STRING scores

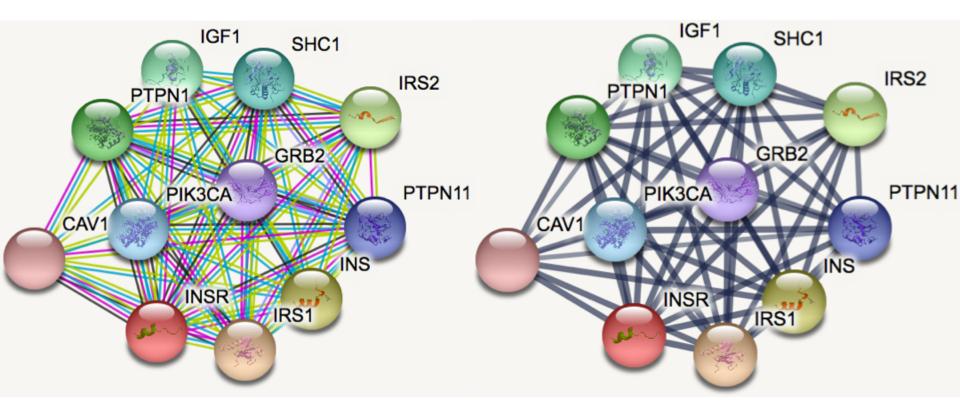
- However, it is not that simple:
 - Many databases
 - Different formats
 - Different identifiers


- Variable quality
- Not comparable
- Not the same species
- \rightarrow Quality scores [0,1] based on a gold standard
 - Common scale for comparison
 - Implicit weighting by quality

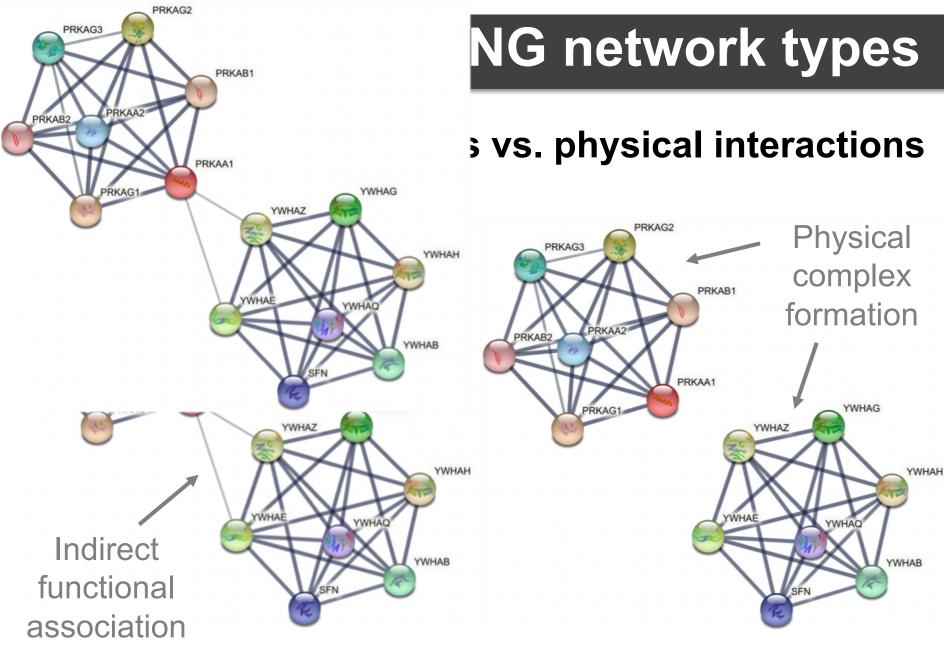
teraction				
B INSR [ENSP00000303830]			PIK3R1 [ENSP00000428056]	
Insulin receptor; Receptor tyrosine kir mediates the pleiotropic actions of in insulin leads to phosphorytation of se substrates, including, insulin receptor 2, 3, 4), SHC, GAB1, GBL and other sig intermediates. Each of these phosph serve as docking proteins for others is that contain Strc-homology-2 domain that specifically recognize different pl residues, including the pBS regulatory and SHP2. Phosphorylation of IRSs p acti []	sulin. Binding of sveral intracellular substrates (IRS1, naling srylated proteins gnaling proteins s (SH2 domain) hosphotyrosine subunit of PI3K	↔	Phosphoinositide-3-kinase regulatory subunit alpha/ /delta; Phosphatidylinositol 3-kinase regulatory subu alpha; Binds to activated (phosphorylated) protein-Ty kinases; through its SH2 domain; and acts as an ada mediating the association of the p110 catalytic unit larama membrane. Necessary for the insulin-stimuli increase in glucose uptake and glycogen synthesis is insulin-sensitive tissues. Plays an important role in signaling in response to FGR1, FGFR2, FGFR3, FGF KITLG/SCF; KIT, PDGFRA and PDGFR8. Likewise, play role in ITGB2 signaling. Modulates the ce []	unit yr ipter, to the ated n R4,
	Evidence suc	gesting a	a functional link:	
Neighborhood in the Genome:				
Gene Fusions: Cooccurence Across Genomes:	none / insignificant none / insignificant			
Co-Expression:	none, but putative h	omologs	are coexpressed in other organisms (score 0.062).	show
Experimental/Biochemical Data:	yes (score 0.870). li organisms (score 0		n, putative homologs were found interacting in other	show
Association in Curated Databases:	yes (score 0.900).			show
Co-Mentioned in Pubmed Abstracts:	yes (score 0.457). In other organisms (se		n, putative homologs are mentioned together in 8).	show
Combined Score:	0.995			

https://string-db.org/help//faq/#how-are-the-scores-computed

STRING score calibration



von Mering et al. Nucleic Acids Research, 2005.


STRING network views

What is the difference between these two views?

Evidence view

Confidence view

New since STRING v11.5

STRING exercise 2 (20 min)

https://jensenlab.org/training/string/eubic/

In this exercise, we will work with a list of proteins associated with epithelial ovarian cancer (EOC) in the study by <u>Francavilla *et al.*</u> and learn how to query STRING for multiple proteins, change the query parameters and do functional enrichment.

Exercise 2.1: Multiple proteins query

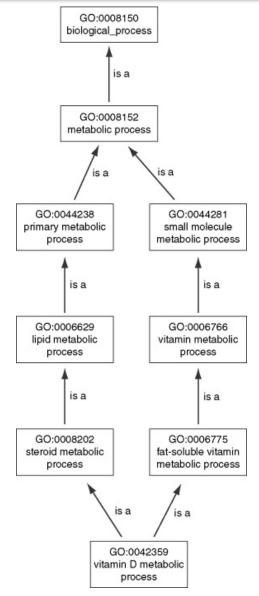
Question 1: How many nodes and edges are in the resulting network?

Exercise 2.2: Query parameters

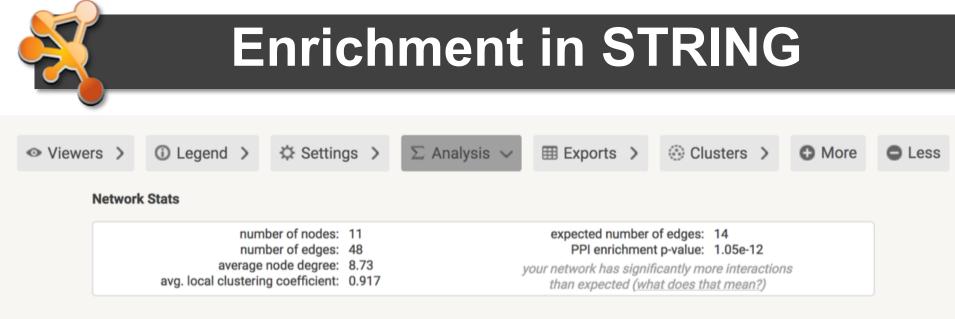
Question 2: How does changing the confidence or network type influence the set of interactions shown?

Question 3: What evidence types are available for the physical interactions? Are there more or fewer evidence types than in the full STRING network?

Exercise 2.3: Functional enrichment


Question 4: How many categories contain enriched annotation terms?

Question 5: What information is shown in each line of the table? How can you find out more about this annotation term?


Question 6: Do the pathways annotate the same set of genes or not?

Functional enrichment analysis

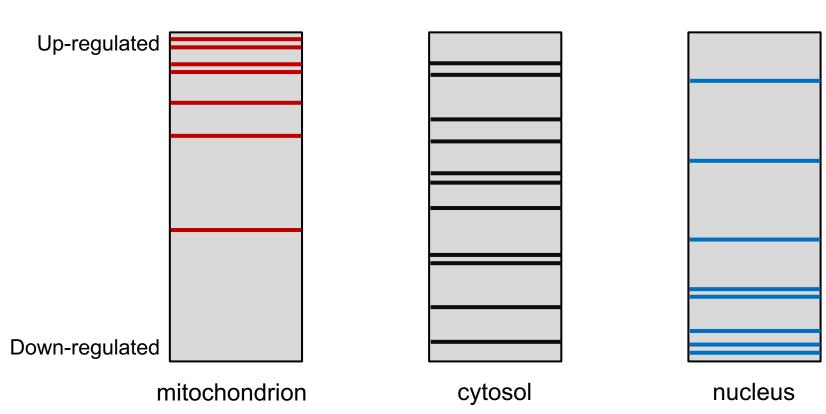
- aka over-representation analysis
- A *term* is usually a *pre-defined group* of genes, with the same function or the same process, e.g. a pathway like *TCA cycle* or a Gene Ontology term like *mRNA processing*
- Identify terms that are statistically overrepresented for a set of *regulated* genes compared to a background set of genes
- Fisher's exact test followed by multiple testing correction
- Choosing the *right* background is very important: genome-wide vs. user-defined

Gene ontology example

Functional enrichments in your network

Note: some enrichments may be expected here (why?)

explain columns


>	Biological Process (Gene Ontology)			
GO-term	description	count in network	strength	false discovery rate
GO:1902202	regulation of hepatocyte growth factor receptor signaling pa	2 of 4	2.95	3.45e-05
GO:0060267	positive regulation of respiratory burst	2 of 6	2.77	5.83e-05
GO:0045725	positive regulation of glycogen biosynthetic process	5 of 17	2.72	4.59e-11
GO:1990535	neuron projection maintenance	2 of 8	2.65	8.78e-05
GO:0032000	positive regulation of fatty acid beta-oxidation	2 of 9	2.6	0.00010
				(more)

>	Molecular Function (Gene Ontology)			
GO-term	description	count in network	strength	false discovery rate
GO:0043559	insulin binding	2 of 5	2.85	6.17e-05
GO:0005159	insulin-like growth factor receptor binding	5 of 16	2.74	2.40e-11
GO:0005158	insulin receptor binding	7 of 23	2.73	3.77e-16
GO:0043560	insulin receptor substrate binding	3 of 11	2.69	7.36e-07
GO:0031994	insulin-like growth factor I binding	2 of 9	2.6	0.00013
				(more)

Gene set enrichment analysis

- *aka* GSEA is performed on a ranked list of all genes
- Kolmogorov-Smirnov test to identify which terms show a non-random distribution across the sorted gene list, followed by multiple testing correction

GSEA in **STRING**

Your input data 1: PKP1

2: CDSN

4: DSC1

5: DSG1

6: CALML5

7: ZNF750

8: SERPINB7

3: SERPINB5

Your detected functional enrichments

	Biological Process (GO)		
GO-term	description	count in gene set	false discovery rate
GO:0070268	cornification	107	1.22e-13
GO:0031424	keratinization	180	1.73e-08
GO:0061436	establishment of skin barrier	19	7.48e-07
GO:0033561	regulation of water loss via skin	21	4.07e-06
GO:0050891	multicellular organismal water homeostasis	62	0.00070
	-		(more)

9: LCE2B	-7.4672216299570175
10: CHP2	-7.423878301199893
11: GJB6	-7.301189455146853
12: COL17A1	-7.2636604397081825
13: C19orf33	-7.1952071849953185
14: SBSN	-7.140458097049176
15: LY6D	-7.056120251292827
16: TRIM29	-7.034785864374081
17: FLG	-7.031575998772657
18: CRCT1	-7.0226906177601025
19: KRT15	-6.867025548520702
20: SPRR1A	-6.859561525754514
21: LOR	-6.848695263892816
22: CLCA2	-6.767725587791244
23: SLURP1	-6.7673021587277775
24: C1orf68	-6.6955745962812125
25: LGALS7	-6.6132404743408575
26: CST6	-6.585766047436771
27: LYPD3	-6.5731282095054295
28: DMKN	-6.4867482090614805
29: LCE1B	-6.460586585775241
30: WFDC5	-6.441728770048803
31: SPRR2G	-6.4192093272457145
32: CNFN	-6.384859699255222

-8 326649949152102

-8.130157304186698

-8.065760365992743

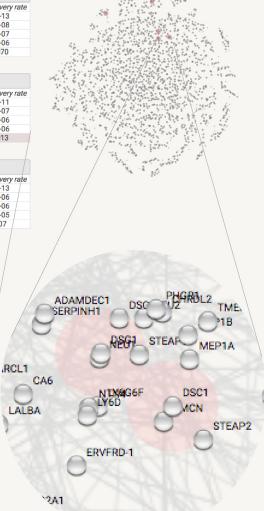
-7.917077464751732

-7.838328194641223

-7.706114452582677

-7.5277671530949535

-7.497837481276632

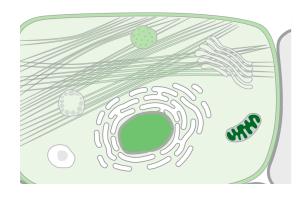

V	Reference publications			
publication	(year) title		count in gene set	false discovery rate
RMID:23921950	(2014) Highly rapid and efficient conve	ersion of human fibroblasts to keratinocyte-like cells	. 50	9.48e-11
PMID:26644517	(2015) A keratin scaffold regulates epi	idermal barrier formation, mitochondrial lipid	67	1.75e-07
PMID:27408699	(2016) Recent advances in understand	ling ichthyosis pathogenesis.	23	1.16e-06
PMID:25695600	(2015) Structural and biochemical cha	nges underlying a keratoderma-like phenotype in mi	ice 53	1.16e-06
PMID:9892899	(1998) All-trans retinoic acid comprom	nises desmosome expression in human epidermis.	6	0.00013
				(more)
	Cellular Component (GO)			
GO-term	description		count in gene set	false discovery rate
GO:0001533	cornified envelope		51	9.48e-13
GO:0097209	epidermal lamellar body		4	2.65e-06
GO:0030056	hemidesmosome		7	2.65e-06
GO:0030057	desmosome		25	5.34e-05
GO:0097539	ciliary transition fiber		10	0.0407
				(more)

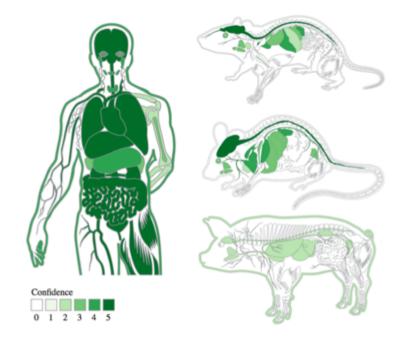
Your input data

E.	1: PKP1	-8.326649949
	2: CDSN	-8.1301573041
	3: SERPINB5	-8.0657603659
	4: DSC1	-7.9170774647
	5: DSG1	-7.8383281946
	6: CALML5	-7.7061144525
	7: ZNF750	-7.52776715?
	8: SERPINB7	-7.4978374
	9: LCE2B	-7.46722"
	10: CHP2	-7.42?
	11: GJB6	-7
	the second second to	

arrier formation, the .nthyosis pathogenesis. s underlying a keratoderma-lik desmosome expression in h

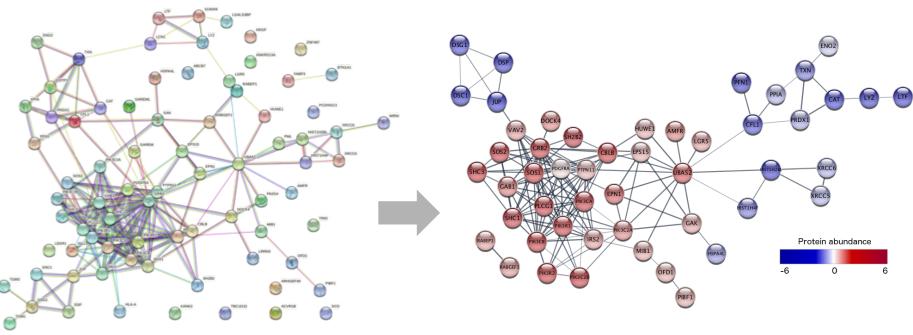
(in gene set	false discovery	
50	9.48e-11	
67	1.75e-07	
23	1.16e-06	
53	1.16e-06	
6	0.00013	
	(more)	
53 6	1.16e-06 1.16e-06 0.00013	




Full proteome network (Homo sapiens)

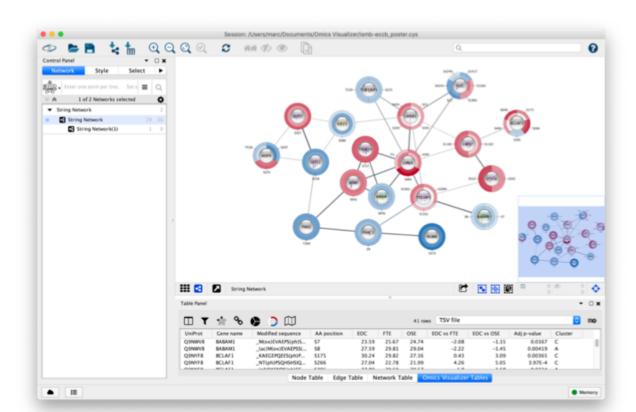
Related databases

- COMPARTMENTS: Subcellular localization database
- TISSUES: tissue expression database for human, mouse, rat and pig
- **DISEASES**: disease-gene associations mined from the literature
- All three provide confidence scores between 0 and 5 stars



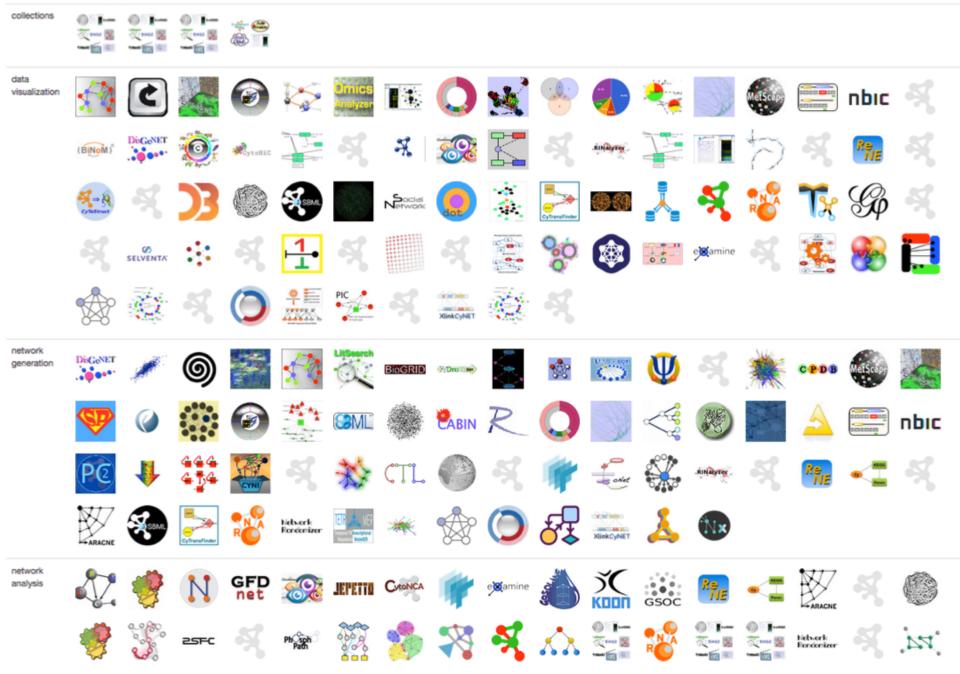
http://jensenlab.org/resources/

From STRING to Cytoscape


- Web-based network interfaces have limitations
 - Creating networks for large lists of genes
 - Integrating and showing additional experimental data
 - Having more powerful analysis and visualization options

Cytoscape

- Open source tool for network analysis and visualization
- Large, active community of developers & users
- However, Cytoscape itself doesn't know any biology
- → Cytoscape apps: <u>apps.cytoscape.org</u>


Sign In

All Apps Categories	Newe	st Re
collections data visualization network generation network analysis		BNMatch2 BNMatch pro optimized m
graph analysis online data import automation integrated analysis clustering	5₽	BioGatewa Plugin An exploration plugin that w
systems biology utility enrichment analysis visualization		CyCommu Integrates m detection an
data integration layout core app annotation ontology analysis	Тор D	ownlo
pathway database network comparison	*	ClueGO Creates and functionally
more =	**	CluePedia CluePedia: A pathway insi
		stringApp Import and a networks fro

we	st Releases	l	Get Started with the App Store »
•	BNMatch2	D	DKernel DKernel uses Diffusion Kernel algorithm to propagate sub-
	BioGateway Cytoscape Plugin An explorative network building plugin that works with the		IntAct App BETA: Build molecular interaction networks from IntAct database.
	CyCommunityDetection	dot	dot-app Import/export of Graphviz files in Cytoscape
o D	ownloaded App	s	more newest releases »
8	ClueGO	Bingo	BINGO Calculates overrepresented GO terms in the network and display
\$	CluePedia CluePedia: A ClueGO plugin for pathway insights using integrated	9	GeneMANIA Imports interaction networks from public databases from a list of
	stringApp		MCODE

more top downloads »

Wall of Apps 372 total

stringApp

Import and augment Cytoscape networks from STRING

(22) 122414 downloads | citations | discussions

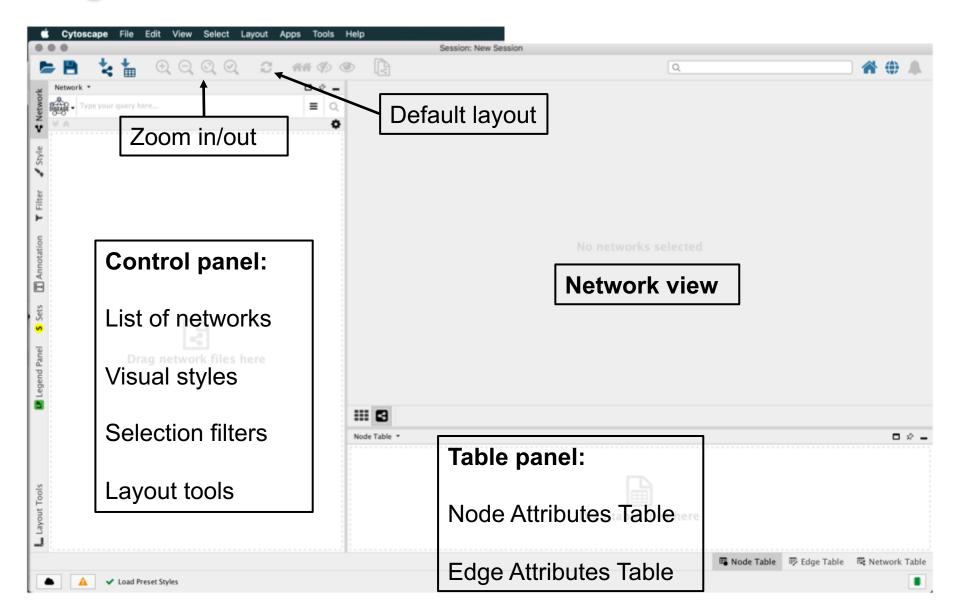
Details Release History

Categories: annotation, automation, data visualization, disease, enrichment analysis, gene-disease association, gene function prediction, import, interaction database, network generation, online data import, PPI-network, visualization

stringApp imports functional associations or physical interactions between protein-protein and protein-chemical pairs from STRING, Viruses.STRING, STITCH, DISEASES and from PubMed text mining into Cytoscape. Users provide a list of one or more gene, protein, compound, disease, or PubMed queries, the species, the network type, and a confidence score and *stringApp* queries the database to return the matching network. Currently, four different queries are supported:

- STRING: protein query -- enter a list of protein names (e.g. gene symbols or UniProt identifiers/accession numbers) to obtain a STRING network for the proteins
- STRING: PubMed query -- enter a PubMed query and utilize text mining to get a STRING network for the top N proteins associated with the query
- STRING: disease query -- enter a disease name to retrieve a STRING network of the top N
 proteins associated with the specified disease
- STITCH: protein/compound query -- enter a list of protein or compound names to obtain a network for them from STITCH

- Website
- Tutorial
- Cite this App
- Code Repository
- Automation Support
- 🖂 E-mail



Let's try it out!

How many have installed Cytoscape 3.9.1?

If not installed yet, get it from here: <u>http://cytoscape.org/download.php</u>

Install stringApp v1.7.1

Cytoscape	File	Edit	View	Select	Layout	Apps	Tools	Help	
•					_	Арр	Manage	r	
					Ap	p Manager			
				Install App	s Currentl	y Installed	Check	for Updates	5
	C	ownload	l Site: h	ttps://apps	.cytoscape.o	rg/		٢	Manage Sites.
	(Q <mark>string</mark>	Арр						
		all apps collection apps by	ons (4)		stringApp			tringApp .7.0	
							lr n	mport and a etworks fro	augment Cytosca om STRING
		Instal	from File.			View	on App Sto	re	Install
	?								CI

stringApp exercise 1 (10 min)

https://jensenlab.org/training/stringapp/eubic/

In this exercise, we will perform some simple queries to retrieve molecular networks in Cytoscape using the stringApp.

Exercise 1.1: Protein query

Question 1: How many nodes are in the resulting network? What types of information do the **Node Table** and the **Edge Table** provide?

Exercise 1.2: Disease query

Question 2: Which additional attribute column do you get in the **Node Table** for a disease query compared to a protein query? Hint: check the last column.

Import network (edge) data

Starting with a list of genes, no network data

- stringApp
- GeneMANIA app
- IntAct app

Pathway databases

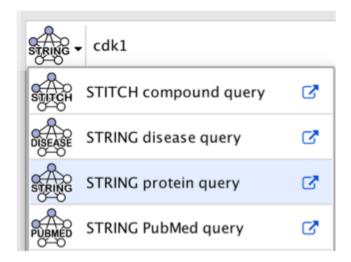
- KEGGscape app
- ReactomeFI app
- WikiPathways app

Your own network data

- from files, e.g. Excel tables or text files
- from R or Python via automation

ile	Edit	View	Select	Lay	out	Apps	Tools	Help
Open ¥O			жо	Session: /Users/donchev				
Open Recent Save			► жs	0	\bigcirc	Э	1	ñ Ø) (
Save As			<mark></mark>	•	□ ×			
Clo	ose		at	tion	►			
Ne	w Netw	ork		=	۵			
Import >				Network from NDEx				
Export >				Network from File				
Print #I			ЖР	Network from URL Network from Public Databases				
sif(1)				Table from File				
				Table from URL				
				Table from Public Databases				
				Omics Visualizer table from File				
				Styles from File				

stringApp

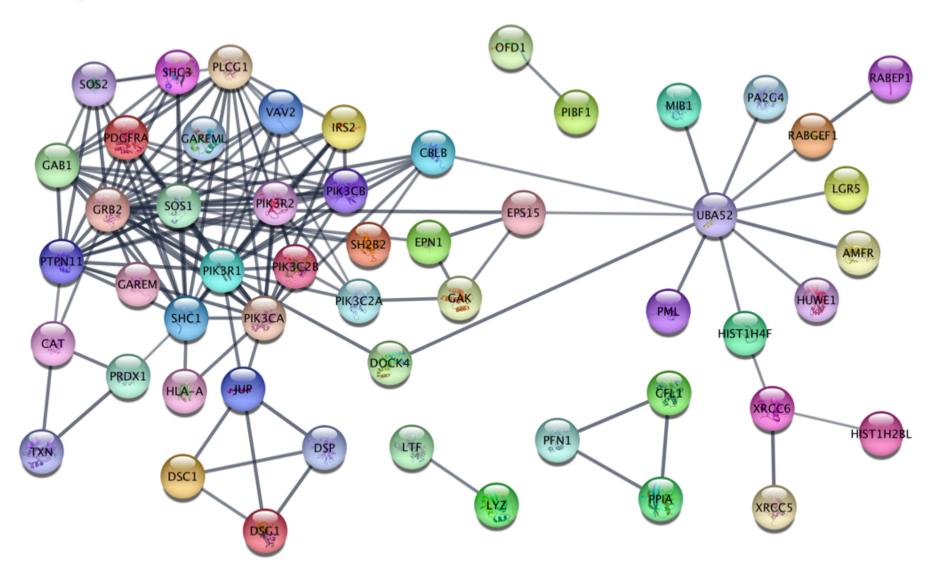

- STRING protein query
 - Queries for STRING interactions for one protein or for a list of identifiers

STRING compound query

- Queries for protein-compound interactions
- STRING disease query
 - Queries for disease-associated proteins from DISEASES and for STRING interactions between them

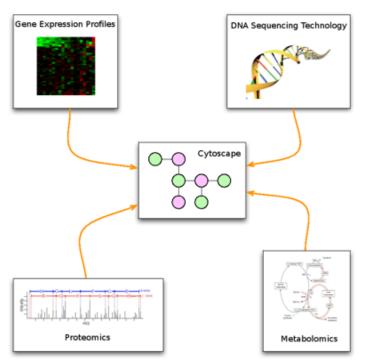
STRING PubMed query

 Retrieves STRING interactions for proteins co-occurring with the query term in PubMed



STRING protein query

$\bullet \bigcirc \bullet$	Import Network from Public Databases	
Data Source:	STRING: protein query	About
Species: Ho	omo sapiens	V
All prote	ins of this species	
Enter protein	names or identifiers:	
Q08188		
Q08554 P61626		
P81605		
Q6ZMV7		
P09104		
P62937 Q13410		
P13010		
P12956		
P30512 P09211		
075027		
Q9UQ80		
Q06830 P51858		
095757		
Network ty	pe: O full STRING network O physical subnetwork	
a . a .		
Confidence	e (score) cutoff: 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	0.40
Maximum	additional interactors:	
Maximum a	0 10 20 30 40 50 60 70 80 90	100
Options:	Use Smart Delimiters 📃 Load Enrichment Data	
Cancel	Back	Import


STRING network in Cytoscape

Attribute (table) data

- Nodes and edges can have data associated with them
 - Gene expression data
 - Mass spectrometry data
- Import own data from files, e.g. Excel sheets, or via automation from R or Python
- Import complex omics data (via Omics Visualizer app)
- Identifiers have to match!

Node table

Table Panel

🚠 display name	stringdb canonical name	S stringdb description	S stringdb	S stringdb	C	compartment cytoskeleton	C compartment cytosol	1	tissue blood
PHF1	O43189	Polycomb-like prot	MAQPPRLSRSGAS	Homo sapiens		5.0	0.326524		0.766667
EDAR	Q9UNE0	Tumor necrosis fac	MAHVGDCTQTPW	Homo sapiens			0.328125		0.750488
IL6	P05231	B-cell stimulatory f	MNSFSTSAFGPVA	Homo sapiens		2.617751	2.977923		4.0
CREB1	P16220	Cyclic AMP-respon	MTMESGAENQQS	Homo sapiens		1.709787	1.861972		3.449199
MS4A5	Q9H3V2	Membrane-spanni	MDSSTAHSPVFLV	Homo sapiens					
YWHAQ	P27348	Tyrosine 3-monoo	MEKTELIQKAKLA	Homo sapiens		2.200642	4.573817		4.794277
AKT1	P31749	V-akt murine thym	MSDVAIVKEGWLH	Homo sapiens		4.742235	5.0		3.61311
ADAM10	014672	Disintegrin and me	MVLLRVLILLLSWA	Homo sapiens		0.905751	0.670166		4.566774
BIN1	075514	Box-dependent my	MAEMGSKGVTAG	Homo sapiens		4.193255	4.589923		4.468784
NCSTN	Q92542	Nicastrin; Essential	MATAGGGSGADP	Homo sapiens		2.584858	0.28125		1.411382
NRGN	Q92686	Neurogranin (prote	MDCCTENACSKP	Homo sapiens		1.019197	4.181165		2.951829
GIG25	Q6NSC9	Serpin peptidase in	MERMLPLLALGLL	Homo sapiens		2.315754	1.121397		3.634819
SYP	P08247	Major synaptic vesi	MLLLADMDVVNQ	Homo sapiens		3.11418	1.395096		1.911957

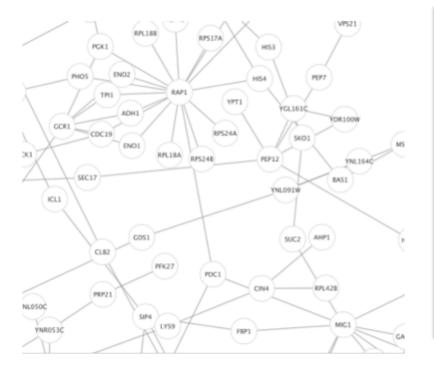
- Node Table Edge Table Network Table
- Protein information from STRING
- Subcellular localization scores (<u>https://compartments.jensenlab.org/</u>)
- TISSUES expression scores (<u>https://tissues.jensenlab.org/</u>)
- IDG drug target information (<u>https://pharos.nih.gov/</u>)
- Experimental data from the original table

Know your identifiers

	А	В	С	D	G	J
1	UniProt	Gene name	Peptides	Sequence coverage [%]	5 min log ratio	10 min log ratio
2	Q99880	HIST1H2BL	5	35.7	-2.66	-2.66
3	Q8TER5	ARHGEF40	34	28.3	1.95	1.56
4	Q8IZ07	ANKRD13A	12	19.2	1.07	1.08
5	P62805	HIST1H4A	11	57.3	-2.31	-1.39
6	Q08380	LGALS3BP	14	28.2	-3.16	-2.98
7	O00750	PIK3C2B	35	24.2	2.21	2.31
8	O00443	PIK3C2A	29	17.8	1.13	1.26
9	Q9UJ41	RABGEF1	6	6.5	0.67	1.08
10	Q8TC07	TBC1D15	12	19.1	0.43	1.06

Table Panel

- I X


🌣 🛄 🕂 🛍 🚥 f(x)

🏥 query term	name 🔨	description	🏝 target family	tissue nervous system	🏝 5 min log ratio 🏥	10 min log ratio	
014976	GAK	cyclin G associated kinase	Kinase	5	0.38	0.94	
P62993	GRB2	growth factor receptor-bound		5	2.39	2.52	
Q99880	HIST1H2BL	histone cluster 1, H2bl		2	-2.66	-2.66	
P62805	HIST1H4F	histone cluster 1, H4f		5	-2.31	-1.39	e l
095757	HSPA4L	heat shock 70kDa protein 4-like		3	-1.93	-1.12	
Q7Z6Z7	HUWE1	HECT, UBA and WWE domain co		5	0.1	0.82	
Q9Y4H2	IRS2	insulin receptor substrate 2		4	0.28	0.97	
P14923	JUP	junction plakoglobin		4	-2.59	-2.18	"
075473	LGR5	leucine-rich repeat containing	GPCR	3	0.61	1.0	
P02788	LTF	lactotransferrin		4	-3.26	-2.39	
P61626	LYZ	lysozyme		3	-3.96	-2.88	
Q86YT6	MIB1	mindbomb E3 ubiquitin protei		5	-0.43	0.88	
075665	OFD1	oral-facial-digital syndrome 1		4	-0.52	0.85	
P16234	PDGFRA	platelet-derived growth factor	Kinase	5	0.71	0.3	

Node Table Edge Table Network Table

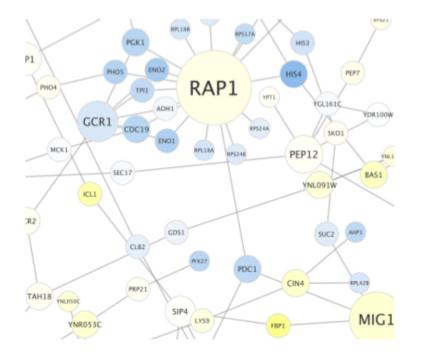
Cytoscape core concepts

Node	Table	•
------	-------	---

🔒 name	Degree	COMMON	📥 gal1RGexp	🚠 gal1RGsig
YDL194W	1	SNF3	0.139	0.018043
YDR277C	2	MTH1	0.243	2.186E-5
YBR043C	1	YBR043C	0.454	5.373E-8
YPR145W	1	ASN1	-0.195	3.174E-5
YER054C	2	GIP2	0.057	0.16958
YBR045C	3	GIP1	0.786	5.5911E-6
YBL079W	1	NUP170	-0.186	2.5668E-4
YLR345W	1	YLR345W	0.108	0.012373
YIL052C	1	RPL34B	-0.258	3.7855E-5

Networks

e.g., protein-protein interaction networks


Tables

e.g., actual network data or annotations

Visual Styles

Cytoscape core concepts

🗎 name	Degree	COMMON	📥 gal1RGexp	🚠 gal1RGsig
YDL194W		1 SNF3	0.139	0.018043
YDR277C		2 MTH1	0.243	2.186E-5
YBR043C		1 YBR043C	0.454	5.373E-8
YPR145W		1 ASN1	-0.195	3.174E-5
YER054C		2 GIP2	0.057	0.16958
YBR045C		3 GIP1	0.786	5.5911E-6
YBL079W		1 NUP170	-0.186	2.5668E-4
YLR345W		1 YLR345W	0.108	0.012373
YIL052C		1 RPL34B	-0.258	3.7855E-5

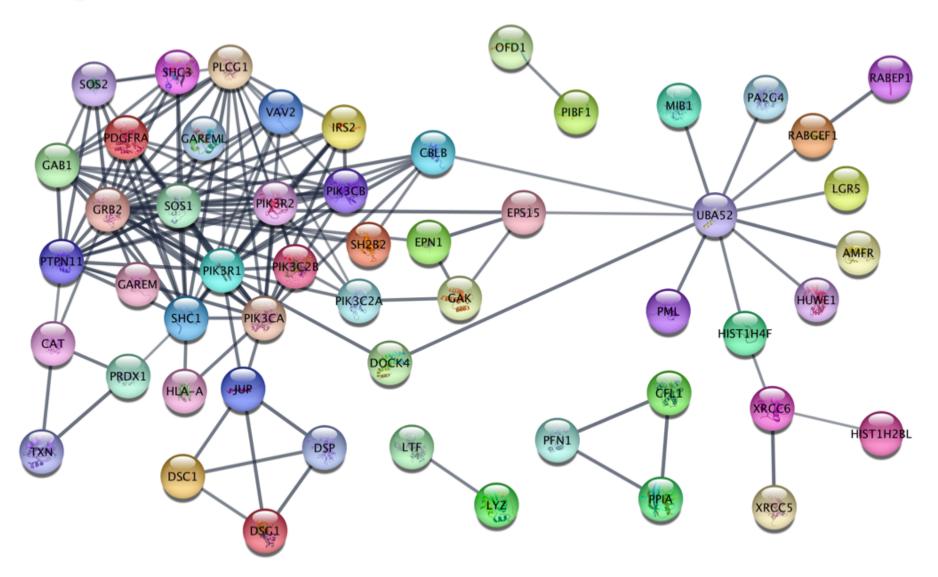
Networks

e.g., protein-protein interaction networks

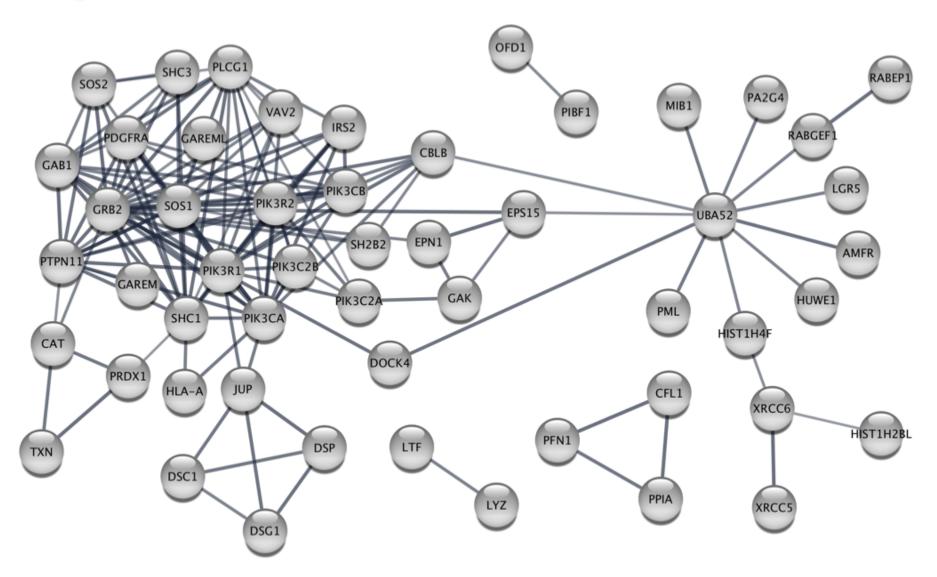
Tables

e.g., actual network data or annotations

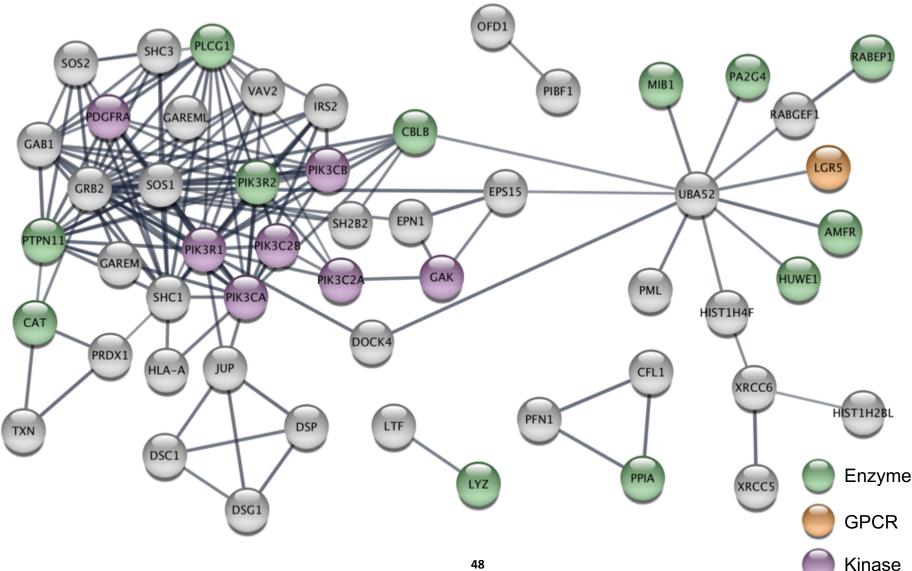
Visual Styles



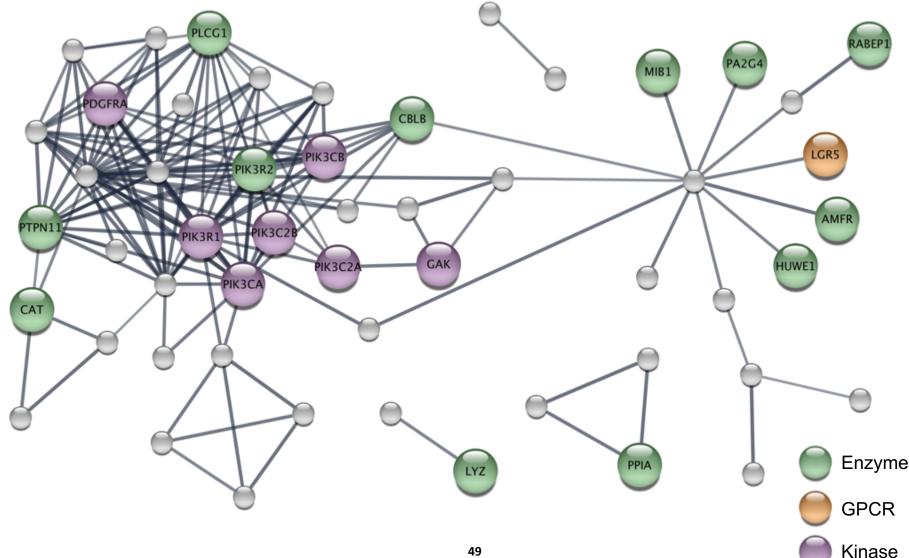
Visualize data using styles


- Visual attributes
 - Nodes: fill color, border color, border width, size, shape, opacity, label, etc.
 - Edges: line style, line color, line width, line opacity, ending type, ending color, etc.
- Mapping types
 - Continuous (numeric values)
 - Expression values, edge interaction scores
 - Discrete (categories)
 - Type of interaction, protein family
 - Pass-through (labels)
- Pre-defined visual styles

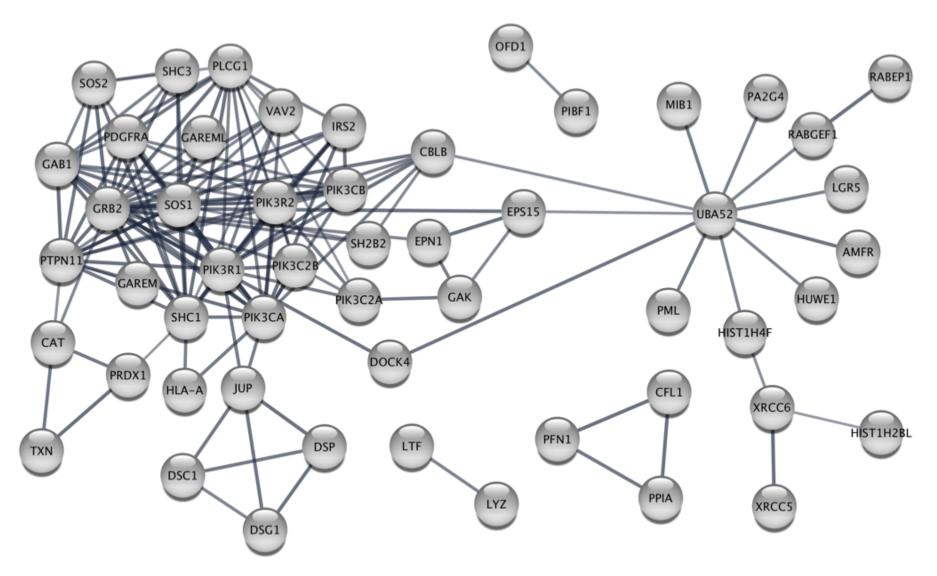
STRING network in Cytoscape



STRING network in Cytoscape

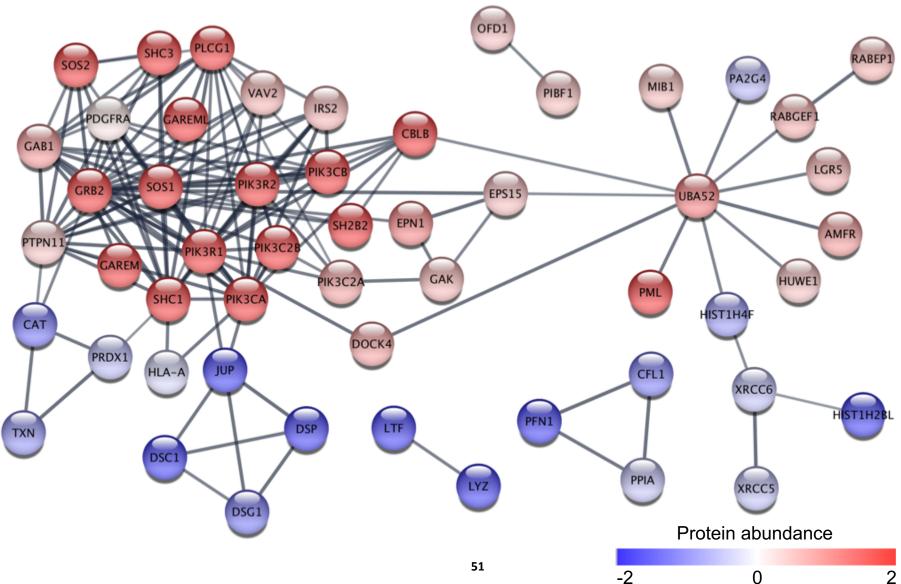

Pharos drug target information

Discrete mapping: node color



Pharos drug target information

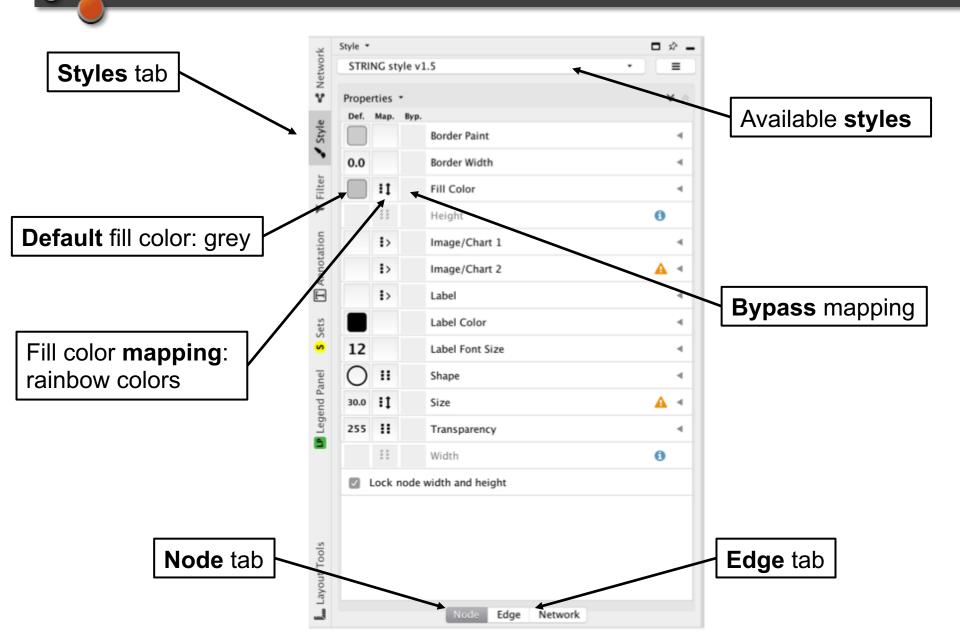
Discrete mapping: node color & node size + Bypass: node labels



STRING network in Cytoscape

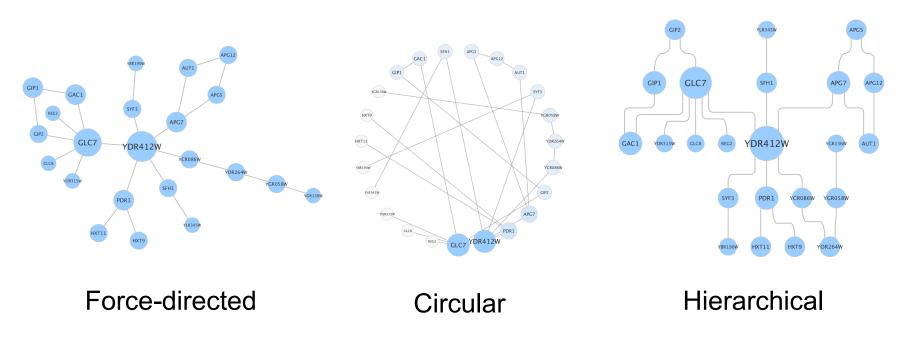
Expression data as node colors

Continuous mapping: node color



Data Mapping: Tips

- Avoid cluttering your visualization with too much data
 - Highlight meaningful differences
 - Avoid confusing the viewer
 - Consider creating multiple network images


Styles: User interface

Layouts

- Layouts determine the location of nodes and (sometimes) the paths of edges
- Recommended apps: yFiles Layout Algorithms, layoutSaver

Save data

- Cytoscape sessions save everything (.cys files)
- Export networks in different formats
- Export node & edge tables as text files
- Publication quality graphics in several formats

stringApp exercise 2 (20 min)

https://jensenlab.org/training/stringapp/eubic/

In this exercise, we will work with the list of proteins associated with epithelial ovarian cancer (EOC) in the study by <u>Francavilla *et al.*</u> to perform typical network imoprt and visualization tasks.

2.1 Protein network retrieval & layout

Question 1: How many nodes and edges are there in the resulting network? Do the proteins all form a connected network? Why?

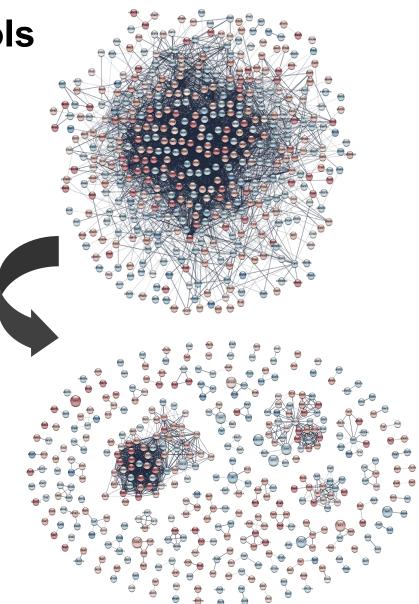
Question 2: Does any of the suggested layouts make patterns in the network easy to recognize? (Recommended: install the app **yFiles Layout Algorithms**)

2.2 Discrete color mapping

Questions: How many of the proteins in the network are ion channels (IC) or GPCRs? How many kinases are in the network?

2.3 Data import

Question 4: Do you see the columns from the Excel table in the Node Table?


2.4 Continuous color mapping

Question 5: Are the up-regulated nodes grouped together? Do you see any issues with the color gradient and can you improve it?

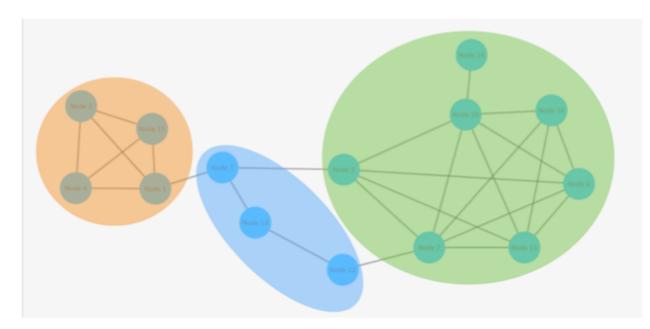
Why use (biological) networks?

- Networks are powerful tools
 - ✓ Reduce complexity
 - ✓ More efficient than tables
 - ✓ Great for data integration
 - ✓ Intuitive visualization
- But also... Challenging!

 Many different network analysis and visualization techniques available

Annotate & analyze the network

- Functional enrichment
- Topological analysis
- Clustering
- And many more...


Apps	Tools	Help	
Арр	Manager	r	
clust	erMaker		►
clust	erMaker	Dimensionality Reduction	►
clust	erMaker	Ranking	►
clust	erMaker	[•] Visualizations	
Layo	utMappe	er	►
RINa	lyzer		
Sets	Арр		►
STRI	NG		
Struc	ctureViz		
BiNG	6 0		

→ Visit the Cytoscape app store at https://apps.cytoscape.org/

Network clustering

- Group nodes together based on some measure of distance or similarity between the nodes
- Makes the network easier to understand
- MCL (Markov CLustering)
 - Fast algorithm
 - No need to specify number of clusters

Clustering in Cytoscape

clusterMaker2

Multi-algorithm clustering app for Cytoscape

🚖 🚖 🚖 🏠 (23) 89244 downloads | citations | discussions

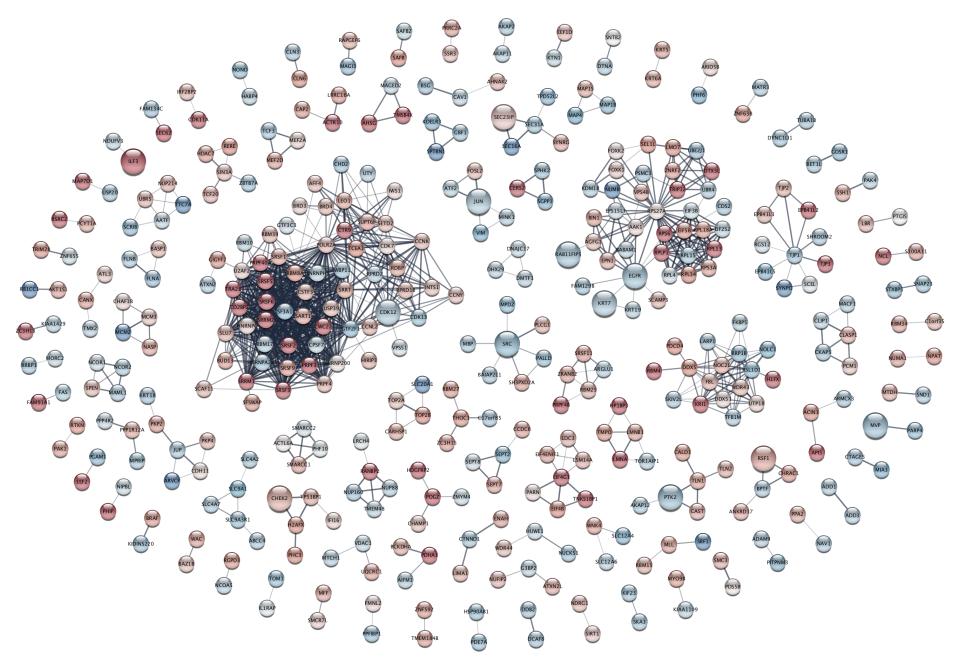
Release History

Categories: automation, clustering, data visualization, gene expression, grouping, heat map visualization, visualization

clusterMaker2 is the Cytoscape 3 version of the clusterMaker plugin. clusterMaker2 provides several clustering algorithms for clustering data within columns as well as clustering nodes within a network. This version also provides support for two new algorithms: Fuzzy C-Means and a new "Fuzzifier". In addition to providing clustering algorithms, clusterMaker2 provides heatmap visualization of both node data and edge data as well as the ability to create new networks based on the results of a clustering algorithm.

Current node attribute algorithms:

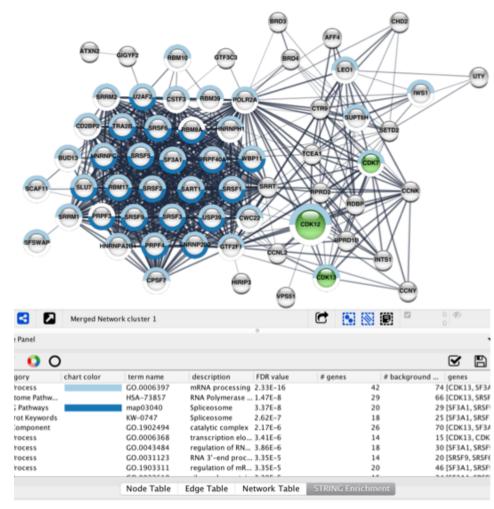
- Hierarchical
- K-Means
- K-Medoid


🛓 Download

Version 1.3.1 Released 30 Oct 2018 Works with Cytoscape 3.6

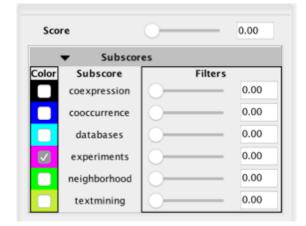
Download Stats Click here

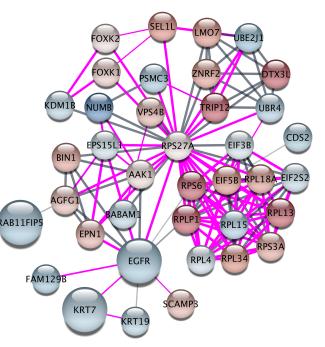
RESOURCES


- Ask a question
- Search BioStars
- Website
- Tutorial
- Cite this App
- Code Repository
- Automation Support
- 🖾 E-mail

Doncheva et al., J Proteome Research, 2019

stringApp functional enrichment


- Not really a network analysis technique, but very useful for visualization
- Filter by category, remove redundant terms
- Visualize significant terms
- Many categories: Gene Ontology terms, Reactome, KEGG & Wiki pathways, Tissues, Diseases, Subcellular localization, STRING clusters, Protein domains, Publications



More stringApp features

- Change confidence level of interactions → important when merging networks
- Expand network by a user defined number of additional interactors → for example compounds
- Filter nodes by tissue or compartment annotation
- Filter and color edges by evidence
- Stringify networks not created with the stringApp
- Query for virus-host interactions

Useful apps & features

- Functional enrichment: stringApp, clueGO & CluePedia, BiNGO, EnrichmentMap
- Clustering: clusterMaker2
- Merge networks: Cytoscape built-in (Tools \rightarrow Merge)
- Omics data visualization: OmicsVisualizer
- Pathways: KEGGscape, WikiPathways, ReactomeFI, OmniPath
- Network topology: Cytoscape built-in (Tools → Analyze network)

stringApp exercise 3 (10 min)

https://jensenlab.org/training/stringapp/eubic/

In this exercise, we will work with the list of differentially abundant proteins from the study by <u>Francavilla *et al.*</u> and perform typical network analysis tasks.

Prerequisites: install the app ClusterMaker2

3.1 Network clustering

Question 1: How many clusters have at least 10 nodes?

Question 2: How many nodes and edges are there in this cluster?

3.2 Functional enrichment

Question 3: How many statistically significant terms are in the table? Which is the most significant term for each of the categories GO Biological Process, Reactome and KEGG Pathways?

3.3 Functional enrichment extras

Question 4: What is the title of the most recent publication?

stringApp exercise 4 (10 min)

https://jensenlab.org/training/stringapp/eubic/

In this exercise, we will compare the network of differentially abundant proteins from the study by <u>Francavilla *et al.*</u> and the network of genes associated with the same disease based on literature and knowledge from the <u>DISEASES</u> database.

4.1 Overlap with DISEASES network

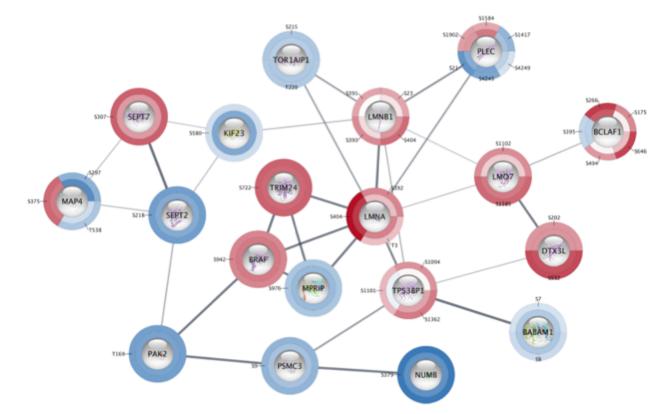
Question 1: How many nodes are in the intersection?

4.2 Integrate networks

Question 2: Which protein from the experiment has the highest disease score?

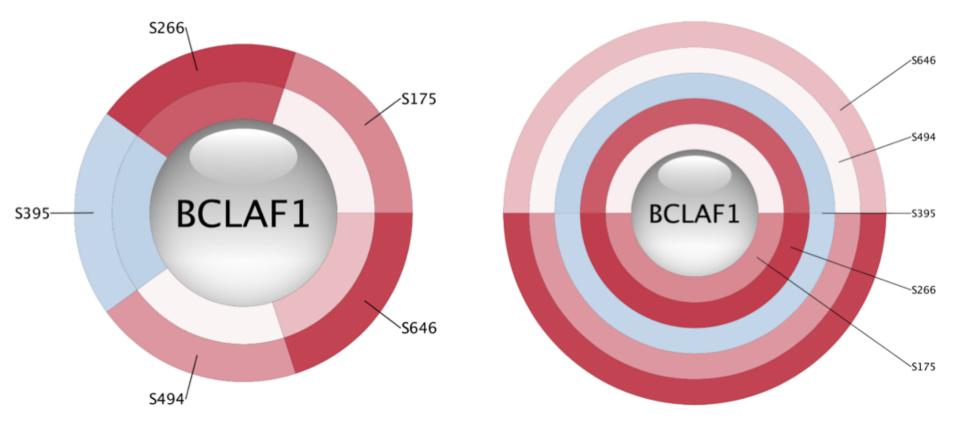
Question 3: Can you find the protein with the highest disease score in the network view?

Complex input data tables


A1	A1 $\qquad \stackrel{\bullet}{\downarrow} \times \checkmark f_{x} \mid UniProt$									
	А	В	С	D	E	F	G	н	1	J
1	UniProt	Gene name	Modified sequence	AA position	EOC	FTE	OSE	EOC vs FTE	EOC vs OSE	Adj p-value
2	O15439	ABCC4	_KDNEESEQPPVPGT(ph)PTLR_	T646	25.72	27.83	28.18	-2.11	-2.46	3.16E-02
3	Q9UKV3	ACIN1	_SSSISEEKGDS(ph)DDEKPR_	S118	24.82	25.54	22.18	-0.72	2.64	2.15E-02
4	Q9UKV3	ACIN1	_AAKLS(ph)EGS(ph)QPAEEEEDQETPSR_	S145	26.22	25.02	23.24	1.21	2.98	1.08E-02
5	Q9UKV3	ACIN1	_SKS(ph)PS(ph)PPRLTEDR_	S290	26	23.46	22.82	2.53	3.17	2.06E-02
6	Q9UKV3	ACIN1	_RLS(ph)QPESAEK_	S614	30.2	26.98	25.94	3.23	4.27	9.13E-04
7	Q9UKV3	ACIN1	_LQPERGS(ph)PK_	S633	27.31	24.19	22.94	3.12	4.37	4.03E-03
8	Q9UKV3	ACIN1	_GVPAGNS(ph)DTEGGQPGRK_	\$742	25.39	21.05	21.62	4.33	3.77	1.89E-03
9	096019	ACTL6A	_EAVREGS(ph)PANWK_	S233	25.07	25.71	23.7	-0.64	1.36	2.64E-02

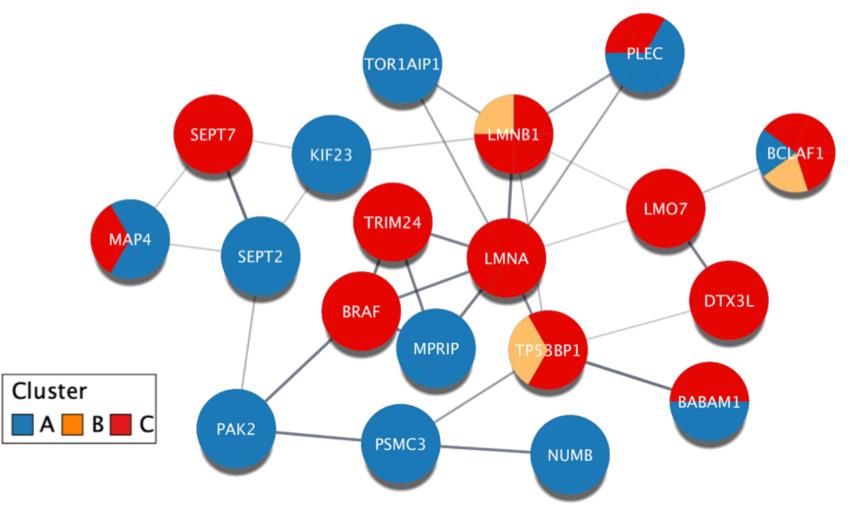
- Usual workflow: given a list pf proteins, import a STRING network and add experimental data from the table
- But what to do with multiple lines of data for one node? Aggregate the data or select the "best" site?
- \Rightarrow How to visualize multiple lines of data for one node?

Omics Visualizer features


- Import multi-omics data as an **Omics Visualizer table**
- Retrieve a STRING network for the proteins in the table
- Visualize data (e.g. phospho-site specific) as pies inside the nodes or donuts around the nodes

Donut visualization

Data: two different conditions as two columns, several phospho sites for each protein as different rows



Ring as column = condition (Slice as row) Ring as row = phospho side (Slice as column)

Pie visualization

Note: only possible for one data column!

There is also an automatically generated legend!

Omics Visualizer ex. 1 (20 min)

https://jensenlab.org/training/omicsvisualizer/

In this exercise, we will work with the list of 541 differentially abundant proteins from the study by <u>Francavilla *et al.*</u> with focus on the phosphorylation data.

Prerequisites: install the app OmicsVisualizer

1.1 Table import

1.2 Table row filtering

Question 1: How many rows do you have in the table? How many rows are shown after you applied the filter?

1.3 STRING network retrieval

Question 2: How many nodes do you have in your network? Does it corresponds to the number of rows you queried?

1.4 Donut visualization

Question 3: How are multiple sites on the same protein shown? Do different donut slices within a protein always show similar changes?

1.5 Pie visualization

Question 5: What are the advantages and disadvantages of donut vs. pie visualizations?

Supporting lectures

The STRING database The Cytoscape platform Cytoscape stringApp The DISEASES database **Enrichment analysis**

https://www.youtube.com/c/LarsJuhlJensen

Tutorials & getting help

- STRING, stringApp & Omics Visualizer:
 - YouTube videos: <u>https://www.youtube.com/c/LarsJuhlJensen</u>
 - Tutorials & exercises: <u>https://jensenlab.org/training/</u>
- Cytoscape
 - Online manual: <u>http://manual.cytoscape.org/</u>
 - Tutorials: <u>https://github.com/cytoscape/cytoscape-tutorials/wiki</u>
 - YouTube videos: <u>https://www.youtube.com/channel/UCv6auk9FK4NgXiXiqrDLccw</u>
 - Helpdesk mailing list: <u>cytoscape-helpdesk@googlegroups.com</u>
- Automation using R and Python
 - <u>https://github.com/cytoscape/cytoscape-automation/wiki</u>
 - <u>https://github.com/scaramonche/EuBIC2020_Cytoscape</u>