

IO17 | Large Scale Bioinformatics for Immuno-Oncology

Signaling pathways with Omnipath

Francesca Finotello, Federica Eduati, and Pedro L. Fernandes

GTPB | The Gulbenkian Training Programme in Bioinformatics Instituto Gulbenkian de Ciência, Oeiras, Portugal | Sept 19th-22nd, 2017

What is OmniPath?

Türei, Korcsmáros & Saez-Rodriguez (2016). Nat Methods, 13(12)966-967. http://www.omnipathdb.org/

- OmniPath is a comprehensive collection of literature curated human signaling pathways
- · Why Omnipath?

Türei, Korcsmáros & Saez-Rodriguez (2016)

 Available via a webservice or using pypath, a Python module for molecular networks and pathways analysis

http://omnipathdb.org/

What is OmniPath?

Network representation

Network interpreted as a graph with:

nodes: proteins

edges: interactions

Load network as igraph

1. Load in R the functions and packages necessary for the exercise:

```
source("https://raw.githubusercontent.com/saezlab/pypath/master/r_import/r_import.r")
```

2. Import Omnipath as *igraph* using the function *omnipath_graph* and show summary:

```
op <- omnipath_graph()
summary(op)</pre>
```

```
## IGRAPH UN-- 8951 50247 --
## + attr: name (v/c), label (v/c), is_directed (e/n), is_stimulation
## | (e/n), is_inhibition (e/n), sources (e/x), references (e/x), dip_url (e/c)
```

Number of vertices and edges in the graph

Names of the attributes for vertices (v) and edges (e)

3. Import only the directed interactions

```
op <- omnipath_graph(directed = TRUE)
is.directed(op)

## [1] TRUE</pre>
```

Access nodes and edges attributes

4. Explore edges and their attributes

```
E(op)[15710]

## + 1/42503 edge (vertex names):
    ## [1] P01579->P15260
```

E(op)[15710]\$sources

```
[[1]]
[1] "HPRD" "Laudanna_effects" "DIP" "Signor" "SPIKE" "KEGG" "SignaLink3"
[8] "BioGRID" "IntAct" "InnateDB" "Macrophage" "Laudanna_sigflow" "Wang"
```

E(op)[15710]\$references

```
[[1]]
[1] "11250200" "10986460" "11250200" "12165521" "10986460" "7673114" "7617032" "10860730"
[9] "10986460" "23898330" "12438563" "7617032" "16110316" "10986460" "7673114" "11250200"
[17] "12165521" "10986460" "7673114"
```

5. Explore vertices and their attributes

```
c(V(op)['P01579']$label, V(op)['P15260']$label)

## [1] "IFNG" "IFNGR1"
```

Play with the network

- 6. Name the target node (use gene name) of the interaction represented by edge 10594
- 7. Check the sign (i.e. stimulation or inhibition) of the interaction represented by edge 10594
- 8. Extract the subgraph defined by vertices:

```
"IFNG", "IFNGR1", "JAK1", "JAK2", "STAT1", "EGF", "EGFR", "PIK3CA", "PTEN", "PIK3CA", "AKT1", "NFKB1"
```

Hints:

- a subgraph of a graph containing only specified vertices and all edges among them can be created using the function *induced_subgraph* (see help typing ?induced_subgraph)
- *induced_subgraph* requires as input vertices IDs (i.e. their Uniprot names). Uniprot names for all vertices can be derived from their gene names as follows:

9. Find all shortest paths between AKT1 ad NFKB1 using the function all_shortest_paths

How to access the questions on Socrative

- 1. Access Socrative with student access at: https://b.socrative.com/login/student/
- 2. Join the IO17 room

3. Enter your name and click "done" to start the quiz