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Statistical Inference

Francisella tularensis Example
Hypothesis testing

Multiple testing
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Francisella tularensis experiment

Pathogen: causes tularemia

Metabolic adaptation key for intracellular life
cycle of pathogenic microorganisms.

Upon entry into host cells quick phasomal
escape and active multiplication in cytosolic
compartment.

Francisella is auxotroph for several amino
acids, including arginine.

Inactivation of arginine transporter delayed
bacterial phagosomal escape and
intracellular multiplication.

Experiment to assess difference in proteome
using 3 WT vs 3 ArgP KO mutants
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Summarized data structure

o WT vs KO
@ 3 vs 3 repeats

@ 882 proteins

Protein WT, WT, WTj KO, KO, KO3
gi|118496616 29.83 29.77 29.91 29.70 29.86 29.80
gi|118496617 31.28 31.23 31.51 31.30 31.51 31.76
gi|118496635 32.39 32.27 3224 3225 3214 3222
gi|118496636 30.74 30.54 30.64 30.65 30.49 30.60
gi|118496637 29.56 29.35 29.56 29.30 29.24 29.14
gi|118498323 31.38 30.52 30.62 31.04 27.38 NA
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Data T-test

Hypothesis testing: a single protein
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Data T-test

Hypothesis testing: a single protein

Francisella (gi|118497015)

S _log,FC —14
0 —— t= = =-11.9
S 7 — seIog2 Fe 0.118
9o Is t = —11.9 indicating that
= 8 there is an effect?
R How likely is it to observe
—— t = —11.8 when there is no
| ; effect of the argP KO on the
wr D8 protein expression?
Treatment
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Null hypothesis and alternative hypothesis

@ In general we start from alternative hypothese Hj: we want
to show an effect of the KO on a protein

o On average the protein abundance in WT is different from that
in KO
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Null hypothesis and alternative hypothesis

@ In general we start from alternative hypothese Hj: we want
to show an effect of the KO on a protein
o On average the protein abundance in WT is different from that
in KO
o But, we will assess it by falsifying the opposite: null
hypothesis Hy
o On average the protein abundance in WT is equal to that in
KO
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Two Sample t-test

data: z by treat
t = -11.449, df = 4, p-value = 0.0003322
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-1.031371 -1.691774
sample estimates:
mean in group D8 mean in group WT
29.26094 30.62251

@ How likely is it to observe an equal or more extreme effect than the
one observed in the sample when the null hypothesis is true?

@ When we make assumptions about the distribution of our test
statistic we can quantify this probability: p-value. The p-value will
only be calculated correctly if the underlying assumptions hold!

@ When we repeat the experiment, the probability to observe a fold
change more extreme than a 2.6 fold (log, FC = —1.36) down or up
regulation by random change (if Hp is true) is 3 out of 10.000.

@ If the p-value is below a significance threshold o we reject the null
hypothesis. We control the probability on a false positive result
at the a-level (type | error)
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Hypothesis testing: a single protein
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Multiple hypothesis testing

Multiple hypothesis testing
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Multiple hypothesis testing

Problem of multiple hypothesis testing

o Consider testing DA for all m = 882 proteins simultaneously
o What if we assess each individual test at level o?

— Probability to have a false positive among all m simultatenous
test >>> a =0.05

Suppose that 600 proteins are non-DA, then we could expect

to discover on average 600 x 0.05 = 30 false positive proteins.
Hence, we are bound to call false positive proteins each time

we run the experiment.
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Multiple hypothesis testing

FDR: False discovery rate

o FDR: Expected proportion of false positives on the total
number of positives you return.

@ An FDR of 1% means that on average we expect 1% false
positive proteins in the list of proteins that are called
significant.

@ Defined by Benjamini and Hochberg in 1995

FP Pr(|T| > tihres| Hi
FDR(ltthresD = E|: :| — 70 r(| ‘— th es‘ 0)

FP 4+ TP Pr(|T| > tthres)
]' X ptthres
FDRBH(| tehres|) = Ho <t

o FDR adjusted p-values can be calculated (e.g. Perseus, R, ...)
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Multiple hypothesis test

Ordinary t-test

-log10(p-value)




Moderated statistics

Moderated Statistics
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Moderated statistics

Problems with ordinary t-test

—log10(p-value)

Ordinary t-test
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Moderated statistics

Problems with ordinary t-test

Original t—test

log2 FC

s, Ghent




Moderated statistics

Shrinkage of the variance and moderated t-statistics

Shrinkage of Standard
Deviations

S
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Moderated statistics

Shrinkage of the variance with limma

15

Moderated standard deviation

T T
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Ordinary standard deviation
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Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test

Ordinary t-test Moderated t-test
<~ o <~ o
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Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test

Original t-test Moderated t-test
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Moderated statistics

log-fold-change
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Peptide-based models

Peptide-based models
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Peptide-based models

Inference with Peptide Based Methods

Digested Digested
UPS1 protein mix yeast proteins

I + L

Concentration UPS1

Lo ][] [ [ 0] | ]

5 spike-in concentrations: 6A to 6E

labl  lab2 Lab 3

M E— 0 U ==t ==

x3 x3 x3

@ Protein by protein analysis of peptide level

data with linear model
peptide level

Ypept ~ peptide  +
@ Variance estimation in the literature:
protein-wise (LM) or via limma-style EB
(LM-Sq).
o t-tests on model parameters

protein level
treatment + lab
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Extension |: Robust estimation using observation weights
(Ex I: LM-Sqg-Rob)

@ Outlying peptide intensities: incorrect peptide identification,
post-translational modifications, ...

residual

weight
04 05 06 07 08 09 10
. . . . . . .

T
-4 -2 0 2 4 16 17 18 19 20 21
std. residual fitted

o lteratively fit model with observation weights w(djj,)

2
_ y T gtreat _ ppep
argmin E E dijp (,Jp X; ,BJ- j )
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Peptide-based models M-estimation

Method performance

o |
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Peptide-based models Ridge Regression

Extension Il: Ridge regression

~ ) Parameters estimation via ridge regression,
)/ loss function:

/ ) 5
{ T treat pep
argmin E E dijp ( Yip = Xi B = B, )

i=1 p

74|3.' _’_)\;reat Z (Btreat + )\PeP Z ( pep) :|

with
@ Atreat: penalty term for regularization of parameters of interest

@ Apep: penalty term for regularization of peptide specific
parameters
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Peptide-based models Ridge Regression
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Peptide-based models Accuracy & Precision

Fold Change Estimates: Accuracy & Precision

Yeast proteins

0.5

Study Design

Digested Digested
UPS1 protein mix yeast proteins

| + I

Concentration UPS1

0.0

-0.5

MaxLFQ+Perseus
MaxLFQ+limma

Log, fold change estimates

2l — mr
6A 6B 6C 6D 6E !
5 spike-in concentrations: 6A to 6E 6B76A GC6A GD6A GE-GA 6C.6B 6D.6B GELGB 6D16C 6E-6C  6E-6D
Comparison
Lab 1 Lab 2 2 Lab 3 @ Shrinkage: more precise and accurate FC estimates
JiCte===t14 O =S O ==
X3 3 X3 @ Note, negative bias of the log2 FC estimates as spike-in

concentration increases

lonization suppression effects + Violation of normalization
assumptions
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Peptide-based models Accuracy & Precision

Fold Change Estimates: Accuracy & Precision

Spiked UPS proteins

Study Design

Digested Digested
UPS1 protein mix yeast proteins

| + I

Concentration UPS1

o [ e o ]~ <]

@ | — MaxLFQ+Perseus
MaxLFQ+limma

Log, fold change estimates

5 spike-in concentrations: 6A to 6E 6B-6A 6C-6A 6D-6A 6E-6A 6C-6B 6D-6B 6E-6B 6D-6C 6E-6C 6E-6D
Comparison
m'gl! 1 m""":b% 2 ml.a:b?: @ MaxLFQ- Perseus and MaxLFQ-limma are always more biased
3 3 X3 and more variable
@ Again MSqRob has a higher precision
@ Shrinkage does not affect accuracy if there is evidence for DA!
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Peptide-based models Accuracy & Pri

MSqRob

= = C) GitHub

— = https://github.com/statOmics/MSgqRob
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Goeminne, L., Gevaert, K. and Clement, L. (2016). Molecular and Cellular Proteomics, 15(2), 657-668
Goeminne, L., Gevaert, K. and Clement, L. (2017). Journal of Proteomics, In Press.
http://dx.doi.org/10.1016/].jprot.2017.04.004
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Experimental Design

Experimental Design
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Experimental Design

Power?
A= fpl — Zp2
A

Tg=—

Signal SeA

37 signal

T = ——=

« Noise

If we can assume equal
s | variance in both
treatment groups:

noise

1 1
sen = SDy/ —+ —
g npm
s ) 0 ] )
log v — Design: if number of

bio-repeats increases we
have a higher power!
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Experimental Design

@ Study on tamoxifen treated Estrogen Receptor (ER) positive
breast cancer patients

@ Proteomes for tumors of patients with good and poor
outcome upon recurrence.
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Experimental Design

@ Study on tamoxifen treated Estrogen Receptor (ER) positive
breast cancer patients

@ Proteomes for tumors of patients with good and poor
outcome upon recurrence.

3vs3
4 —
o
3 —_
g
(=}
> 270
o
' o
1 —
0 -
I T 1
-4 -2 0 2 4 6
estimate

0 proteins at 5% FDR
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Experimental Design

@ Study on tamoxifen treated Estrogen Receptor (ER) positive
breast cancer patients

@ Proteomes for tumors of patients with good and poor
outcome upon recurrence.

6 vs 6

estimate

41 proteins at 5% FDR
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Experimental Design

@ Study on tamoxifen treated Estrogen Receptor (ER) positive
breast cancer patients

@ Proteomes for tumors of patients with good and poor
outcome upon recurrence.

-log10(p)

Ovs9

estimate

96 proteins at 5% FDR
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Blocking

mental Design Blocking

Lab 2 Lab3

== O=5

x3 x3
Color variable 7!
condition -
MDS plot after full preprocessing !
" Plot MDS points
Plot MDS labels
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Experimental Design Blocking

Experimental Design:
Blocking
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Experimental Design Blocking

Sources of variability

2 _ 2 2 2 2
0 = Opjo + Olab + O extraction + Orun +...

o Biological: fluctuations in protein level between rats of the
same litter, between rats of different litters.

@ Technical: cage effect, lab effect, week effect, plasma
extraction, MS-run, ...
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Experimental Design Blocking

. Blocking on .
a No blocking b cultu?e C Sampling schemes
Completely Complete

! 5 Incomplete block
_'g @ é +05 randomized  randomized block
1 105 ° 105 6 replicates 6 replicates 4 replicates
@—k = _045$=. w05 (Glellel[o/[6/6 ssie 666 [o]6[e[6]6]6
+05 +0.5 6 660660606 666666 6060606060
a$=091011 % 91011 [slsli6ll6lolle o

ool .C?)_‘ObﬂTechnical

-0.5 Response Response 1 2 3 repeats

Figure 2 | Blocking improves sensitivity by isolating variation in samples
that is independent from treatment effects. (a) Measurements from
treatment aliquots derived from different cell cultures are differentially
offset (e.g., 1, 0.5, -0.5) because of differences in cultures. (b) When
aliquots are derived from the same culture, measurements are uniformly
offset (e.g., 0.5). (c) Incorporating blocking in data collection schemes.
Repeats within blocks are considered technical replicates. In an incomplete
block design, a block cannot accommodate all treatments.
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ental Design Blocking

Blocking

o2

_ 2 2
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Color variable !

condition

MDS plot after full preprocessing /!

' Plot MDS points
Plot MDS labels

03 - X6A_8
4 X6A_9
02 X6A_4 -
“ XQBals
g 011
5
2
% 00 X6A_T
2
s X6B_8
B 0.1 X6B_9 &
3 X6B_66B_5
X6B_4
0.2
0.3 - X6B_7
T T T T 1
04 02 0.0 0.2 04

Leading logFC dim 1




Blocking

2 _ 2 2
0~ = O\yithin lab + Obetween lab

Golorvaiabla

condtion

MDS plot after full preprocessing

Plot DS points
Pt MS abeis

All treatments of interest are present within block!
We can estimate the effect of the treatment within block!
We can isolate the between block variability from the analysis
linear model:

y ~ treatment + lab

— Not possible with Perseus!
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Experimental Design Blocking

Power gain of blocking
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Experimental Design

Power gain of blocking
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Experimental Design Blocking

Power gain of blocking
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Experimental Design Blocking

Power gain of blocking

o Completely randomized design: 14 people, 7 baseline BP, 7
BP upon treatment.

@ Randomized complete block desigh: 7 people, 7 baseline BP
and BP upon treatment.
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ental Design Blocking

Power gain of blocking

Completely randomized design

Call:
Im(formula = bp ~ treat, data = captoprilCRD)

Residuals:
Min 1Q Median 3Q Max
-26.714 -11.643 -3.929 11.179 30.857

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 179.143 7.036 25.461 8.19e-12
treatT -23.429 9.950 -2.355 0.0364

(Intercept) **x

treatT *

Signif. codes:

0 7%x%’ 0.001 %> 0.01 ’%’ 0.05 .7 0.1 * 1

Residual standard error: 18.62 on 12 degrees of freedom
Multiple R-squared: 0.316,Adjusted R-squared: 0.259
F-statistic: 5.544 on 1 and 12 DF, p-value: 0.03641
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Exp ental Design Blocking

Power gain of blocking

Randomized complete block design

Call:
Im(formula = bp ~ treat + patient, data = captoprilRCB)

Residuals:
Min 1Q Median 3Q Max
-8 -3 0 3 8
Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 213.000 5.442 39.138 1.86e-08
treatT -15.000 3.848 -3.898 0.008004
patientp2 -38.500 7.200 -5.348 0.001749
patientp3 -29.000 7.200 -4.028 0.006896
patientpd -47.000 7.200 -6.528 0.000617
patientp5 -48.500 7.200 -6.737 0.000521
patientp6 -45.000 7.200 -6.250 0.000777
patientp7 -29.000 7.200 -4.028 0.006896

(Intercept) ***
treatT **
patientp2 *k
patientp3 **
patientpd  kx*
patientps  kx*
patientp6  xkx*
patientp7 *k

Signif. codes:

0 7#x%’ 0.001 ’**> 0.01 ’x’ 0.05 .7 0.1 * 1
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ental Design Blocking

Power gain of blocking

Randomized complete block bad analysis

Call:
Im(formula = bp ~ treat, data = captoprilRCB)

Residuals:
Min 1Q Median 3Q Max
-19.143 -11.643 -1.143 5.357 36.857

Coefficients:
Estimate Std. Error t value
(Intercept) 179.143 6.694 26.763
treatT -15.000 9.466 -1.585
Pr(>ltl)
(Intercept) 4.55e-12 **x*
treatT 0.139

Signif. codes:
0 2#*x’ 0.001 ’*%’ 0.01 %’ 0.05 *.’
0.1 71

Residual standard error: 17.71 on 12 degrees of freedom
Multiple R-squared: 0.173,Adjusted R-squared: 0.1041
F-statistic: 2.511 on 1 and 12 DF, p-value: 0.1391
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