bioinformatics for proteomics

lennart martens

lennart.martens@vib-ugent.be computational omics and systems biology group VIB / Ghent University, Ghent, Belgium

www.compomics.com @compomics Introduction: MS/MS spectra and identification

Database search algorithms

Sequencial search algorithms

Notable caveats and painful disasters

Identification validation

Protein inference: bad, ugly, and not so good

Introduction: MS/MS spectra and identification

Database search algorithms

Sequencial search algorithms

Notable caveats and painful disasters

Identification validation

Protein inference: bad, ugly, and not so good

Peptides subjected to fragmentation analysis can yield several types of fragment ions

There are several other ion types that can be annotated, as well as 'internal fragments'. The latter are fragments that no longer contain an intact terminus. These are harder to use for 'ladder sequencing', but can still be interpreted.

This nomenclature was coined by **Roepstorff and Fohlmann** (*Biomed. Mass Spec.*, 1984) and **Klaus Biemann** (*Biomed. Environ. Mass Spec.*, 1988) and is commonly referred to as 'Biemann nomenclature'. Note the link with the Roman alphabet.

In an ideal world, the peptide sequence will produce directly interpretable ion ladders

Real spectra usually look quite a bit worse

We can distinguish three types of M/MS identification algorithms

Eidhammer, Wiley, 2007

Introduction: MS/MS spectra and identification

Database search algorithms

Sequencial search algorithms

Notable caveats and painful disasters

Identification validation

Protein inference: bad, ugly, and not so good

Database search engines match experimental spectra to known peptide sequences

Three popular algorithms can serve as templates for the large variety of tools

- SEQUEST (UWashington, Thermo Fisher Scientific) <u>http://fields.scripps.edu/sequest</u>
- MASCOT (Matrix Science)
 http://www.matrixscience.com
- X!Tandem (The Global Proteome Machine Organization)
 <u>http://www.thegpm.org/TANDEM</u>

SEQUEST is the original search engine, but not that much used anymore these days

- Can be used for MS/MS (PFF) identifications
- Based on a cross-correlation score (includes peak height)
- Published core algorithm (patented, licensed to Thermo), Eng, JASMS 1994
- Provides preliminary (Sp) score, rank, cross-correlation score (XCorr), and score difference between the top tow ranks (deltaCn, ∆Cn)
- Thresholding is up to the user, and is commonly done *per* charge state
- Many extensions exist to perform a more automatic validation of results

$$R_{i} = \sum_{j=1}^{n} x_{j} \cdot y_{(j+i)}$$

$$XCorr = R_{0} - \frac{1}{151} \left(\sum_{i=-75}^{+75} R_{i} \right) \quad \text{deltaCn} = \frac{XCorr_{1} - XCorr_{2}}{XCorr_{1}}$$

SEQUEST reveals the problems with scoring different charges, and using different scores

0.0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 ΔCn

From: Peng et al., J. Prot. Res. 2002

Mascot is probably the most recognized search engine, despite its secret algorithm

- Very well established search engine, Perkins, *Electrophoresis* 1999
- Can do MS (PMF) and MS/MS (PFF) identifications
- Based on the MOWSE score,
- Unpublished core algorithm (trade secret)
- Predicts an *a priori* threshold score that identifications need to pass
- From version 2.2, Mascot allows integrated decoy searches
- Provides rank, score, threshold and expectation value per identification
- Customizable confidence level for the threshold score

X!Tandem is a clear front-runner among open source search engines

- A successful open source search engine, Craig and Beavis, *RCMS* 2003
- Can be used for MS/MS (PFF) identifications
- Based on a hyperscore (*Pi* is either 0 or 1): *HyperScore* = $\left(\sum_{i=0}^{n} I_i * P_i\right) * N_b! * N_y!$
- Relies on a hypergeometric distribution (hence hyperscore)
- Published core algorithm, and is freely available
- Provides hyperscore and expectancy score (the discriminating one)
- X!Tandem is fast and can handle modifications in an iterative fashion
- Has rapidly gained popularity as (auxiliary) search engine

X!Tandem's significance calculation for scores can be seen as a general template

The influence of various parameter changes is clearly visible (here for X!Tandem)

Verheggen, revision submitted

The main search engines in use are Mascot, Andromeda, SEQUEST and X!Tandem

Verheggen, revision submitted

Among the up-and-coming engines, Comet, MS-GF+ and MS-Amanda are most notable

Verheggen, revision submitted

Because of their unique biases and sensitivity, combining search algorithms can be useful

Numbers courtesy of Dr. Christian Stephan, then at Medizinisches Proteom-Center, Ruhr-Universität Bochum; Human Brain Proteome Project

SearchGUI makes it very easy for you to run multiple free search engines

é			SearchGUI 2.6.5	- 🗆 ×	
File Edit Help					
Input & Output					
Spectrum File(s)	1 file(s) selected			Add Clear	
Search Settings	standard search			Add Edit	
Output Folder	EMBL_proteomics_tra	EMBL_proteomics_transcriptomics_course\practicals\1.3_peptide_to_spectrum_matching\output			
Pre Processing (b	oeta)				
	msconvert	Ry	msconvert File Conversion - ProteoWizard web page	o	
Search Engines					
V	X!Tandem	<i>1</i> 1 € ∆	XITandem Search Algorithm - <u>XITandem web page</u>	o	
V	MyriMatch	AU &	MyriMatch Search Algorithm - MyriMatch web page	0	
V	MS Amanda	AU 🛸 💩	MS Amanda Search Algorithm - <u>MS Amanda web page</u>	0	
V	MS-GF+	AU 🛸 💩	MS-GF+ Search Algorithm - <u>MS-GF+ web page</u>	0	
V	OMSSA	<i>1</i> # € ∆	OMSSA Search Algorithm - OMSSA web page	0	
V	Comet	M 🛆	Comet Search Algorithm - <u>Comet web page</u>	0	
	Tide	Al 单 💩	Tide Search Algorithm - <u>Tide web page</u>	0	
	Andromeda	ßy	Andromeda Search Algorithm - <u>Andromeda web page</u>	0	
Post Processing					
	Ida /	<i>1</i> 2 € ∆	PeptideShaker - <u>Visualize the results in PeptideShaker</u>	0	
	Please cite SearchGUI as <u>Vaudel et al.: Proteomics 2011;11(5);996-9</u> ,			Start the Search!	

Vaudel, Proteomics, 2011

PeptideShaker is your gateway to the results

Vaudel, Nature Biotechnology, 2015

Introduction: MS/MS spectra and identification

Database search algorithms

Sequencial search algorithms

Notable caveats and painful disasters

Identification validation

Protein inference: bad, ugly, and not so good

Sequence tags are as old as SEQUEST, and these still have a role to play today

The concept of sequence tags was introduced by Mann and Wilm

Mann, Analytical Chemistry, 1994

GutenTag, DirecTag, TagRecon

- Tabb, Anal. Chem. 2003, Tabb, JPR 2008, Dasari, JPR 2010
- Recent implementations of the sequence tag approach
- Refine hits by peak mapping in a second stage to resolve ambiguities
- Rely on a empirical fragmentation model
- Published core algorithms, DirecTag and TagRecon freely available
- GutenTag and DirecTag extracts tags,
- TagRecon matches these to the database
- Very useful to retrieve unexpected peptides (modifications, variations)
- Entire workflows exist (e.g., combination with IDPicker)

GutenTag: two stage, hybrid tag searching

De novo sequencing tries to read the entire peptide sequence from the spectrum

Example of a manual de novo of an MS/MS spectrum No more database necessary to extract a sequence!

<u>Algorithm</u> Lutefisk Sherenga PEAKS PepNovo

. . .

References

Dancik 1999, Taylor 2000 Fernandez-de-Cossio 2000 Ma 2003, Zhang 2004 Frank 2005, Grossmann 2005

. . .

Introduction: MS/MS spectra and identification

Database search algorithms

Sequencial search algorithms

Notable caveats and painful disasters

Identification validation

Protein inference: bad, ugly, and not so good

Comparison of search engines shows a difference in underlying assumptions

Kapp, Proteomics, 2005

Some comparisons are just dead wrong, regardless of where they are published

Balgley, MCP, 2007

Colony colapse disorder, soldiers, and forcing the issue (or rather: the solution)

By KIRK JOHNSON Published: October 6, 2010

Knudsen, PLoS ONE, 2011

The identification seems reasonable, if limited in an unreasonable way

Knudsen, PLoS ONE, 2011

The end result may be that you are taken to task for mistakes in your research

Beware of common contaminants

Tyrosine nitrosylation

Ghesquière, Proteomics, 2010

Introduction: MS/MS spectra and identification

Database search algorithms

Sequencial search algorithms

Notable caveats and painful disasters

Identification validation

Protein inference: bad, ugly, and not so good

All hits, good and bad together, form a distribution of scores

Nesvizhskii, J Proteomics, 2010

If we know how scores for bad hits distribute, we can distinguish good from bad by score

The separation is not perfect, which leads to the calculation of a local false discovery rate

Setting a threshold classifies all hits as either bad or good, which inevitably leads to errors

We can evaluate the effect of these errors by plotting the effect of moving the threshold

Decoy databases are false positive factories that are assumed to deliver reliably bad hits

Three main types of decoy DB's are used:

- Reversed databases (easy)

LENNARTMARTENS \rightarrow SNETRAMTRANNEL

- Shuffled databases (*slightly more difficult*)

LENNARTMARTENS → NMERLANATERTTN (for instance)

- Randomized databases (as difficult as you want it to be)

LENNARTMARTENS \rightarrow GFVLAEPHSEAITK (for instance)

The concept is that each peptide identified from the decoy database is an incorrect identification. By counting the number of decoy hits, we can estimate the number of false positives in the original database, **provided that the decoys have similar properties as the forward sequences.**

With the help of the scores of decoy hits, we can assess the score distribution of bad hits

Käll, Journal of Proteome Research, 2008

Introduction: MS/MS spectra and identification

Database search algorithms

Sequencial search algorithms

Notable caveats and painful disasters

Identification validation

Protein inference: bad, ugly, and not so good

Protein inference is a question of conviction

Martens, Molecular Biosystems, 2007

In real life, protein inference issues will be mainly bad, often ugly, and occasionally good

Protein inference is linked to quantification (i)

Nice and easy, 1/1, only unique peptides (blue) and narrow distribution

Protein inference is linked to quantification (ii)

Nice and easy, down-regulated

Protein inference is linked to quantification (iii)

A little less easy, up-regulated

Protein inference is linked to quantification (iv)

A nice example of the mess of degenerate peptides

Protein inference is linked to quantification (v)

A bit of chaos, but a defined core distribution

Thank you!

Questions?