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Challenges in Label Free Quantitative Proteomics

sample proteins peptides HPLC ESI ion trap
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Unbalanced peptides identifications across samples and
messy data
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Introduction

Challenges in Label Free MS-based Quatitative proteomics
MS-based proteomics returns peptides:
pieces of proteins
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Introduction

Challenges in Label Free MS-based Quatitative proteomics

We need information on protein level!
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Introduction Data Analysis

Label-free Quantitative Proteomics Data Analysis Pipelines
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Introduction CPTAC

CPTAC Spike-in Study

Same trypsin-digested yeast
proteome background in each
sample

Trypsin-digested Sigma UPS1
standard: 48 different human
proteins spiked in at 5 different
concentrations (treatment A-E)

Samples repeatedly run on different
instruments in different labs

After MaxQuant search with match
between runs option

41% of all proteins are
quantified in all samples
6.6% of all peptides are
quantified in all samples

→ vast amount of missingness
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Introduction Preprocessing

Preprocessing

Typical preprocessing steps
1 Filtering
2 Log-transformation
3 Normalization
4 (Summarization)

Many methods exist
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Introduction Preprocessing

Filtering

Reverse sequences

Only identified by modification site (only modified peptides
detected)

Razor peptides: non-unique peptides assigned to the protein
group with the most other peptides

Contaminants

Peptides few identifications

Proteins that are only identified with one or a few peptides

Filtering does not induce bias if the criterion is independent
from the downstream data analysis!
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Introduction Preprocessing

Log-transformation
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Variability more equal upon log transformation: often
multiplicative error structure of intensity-based read-outs
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Introduction Preprocessing
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Even in very clean synthetic dataset (same background, only 48 UPS
proteins can be different) the marginal peptide intensity distribution
across samples can be quite distinct

Considerable effects between and within labs for replicate samples

Considerable effects between samples with different spike-in
concentration

→ Normalization is needed
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Introduction Preprocessing

Mean or median?

Over a period of 30 years males desire to have on average
64.3 partners and females 2.8. (Miller and Fishkin, 1997)

Over a period of 30 years males, is the median of the number
of desired partners is 1 for both males and females. (Miller and

Fishkin, 1997)
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Introduction Preprocessing

Mean or median?

Mean is very sensitive to outliers!
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Introduction Preprocessing
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15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Raw peptide intensity (CPTAC D)

Intensity (log2)

D
en

si
ty

lab 1
lab 2
lab 3

15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Raw peptide intensity (CPTAC lab2)

Intensity (log2)

0

A
B
C
D
E

Even in very clean synthetic dataset (same background, only 48 UPS
proteins can be different) the marginal peptide intensity distribution
across samples can be quite distinct

Considerable effects between and within labs for replicate samples

Considerable effects between samples with different spike-in
concentration

→ Normalization is needed

, e.g. quantile normalization

statOmics, Ghent University lieven.clement@ugent.be 13/17



Introduction Preprocessing

15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

QQ−normalized peptide intensity (CPTAC D)

Intensity (log2)

0

lab 1
lab 2
lab 3

15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

QQ−normalized peptide intensity (CPTAC lab2)

Intensity (log2)

0

A
B
C
D
E

Even in very clean synthetic dataset (same background, only 48 UPS
proteins can be different) the marginal peptide intensity distribution
across samples can be quite distinct

Considerable effects between and within labs for replicate samples

Considerable effects between samples with different spike-in
concentration

→ Normalization is needed, e.g. quantile normalization

statOmics, Ghent University lieven.clement@ugent.be 13/17



Introduction Preprocessing

Summarization
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Introduction Preprocessing

Summarization

Strong peptide
effect

Unbalanced peptide
identification

Summarization bias

Different precision
of protein level
summaries
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Introduction Preprocessing

MaxLFQ summarization
Figure 2
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Introduction Preprocessing

Peptide based model
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2 Protein by protein analysis of peptide data with linear model
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p + εip + βsample

i
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Introduction Preprocessing

Robust estimation using observation weights

Outlying peptide intensities: incorrect peptide identification,
post-translational modifications, ...
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