Part I: Normalization \& Summarization

Lieven Clement

Proteomics Data Analysis Shortcourse

Outline

(1) Introduction
(1) Label free MS based Quantitative Proteomics Workflow and Challenges
(2) Preprocessing
© Filtering
(2) Log transformation
(3) Normalization

- Summarization

Challenges in Label Free Quantitative Proteomics

Quantification Identification

Challenges in Label Free Quantitative Proteomics

Quantification Identification

Challenges in Label Free Quantitative Proteomics

- Huge variability

Quantification Identification

Challenges in Label Free Quantitative Proteomics

Peptide characteristics

- Modifications
- Ionisation efficiency
- Outliers
- Huge variability
- MS^{2} selection on peptide abundance
- Context dependent Identification
- Non-random missingness

Challenges in Label Free Quantitative Proteomics

Peptide characteristics

- Modifications
- Ionisation efficiency
- Outliers

- Huge variability
- $M S^{2}$ selection on peptide abundance

- Context dependent Identification
- Non-random missingness

Unbalanced peptides identifications across samples and messy data

Challenges in Label Free MS-based Quatitative proteomics

Challenges in Label Free MS-based Quatitative proteomics MS-based proteomics returns peptides: pieces of proteins

Challenges in Label Free MS-based Quatitative proteomics We need information on protein level!

Label-free Quantitative Proteomics Data Analysis Pipelines

Label-free Quantitative Proteomics Data Analysis Pipelines

CPTAC Spike-in Study

Digested
UPS1 protein mix

Digested yeast proteins

Concentration UPS1

5 spike-in concentrations: 6A to 6E

x3

x3

- Same trypsin-digested yeast proteome background in each sample
- Trypsin-digested Sigma UPS1 standard: 48 different human proteins spiked in at 5 different concentrations (treatment A-E)
- Samples repeatedly run on different instruments in different labs
- After MaxQuant search with match between runs option
- 41% of all proteins are quantified in all samples
- 6.6% of all peptides are quantified in all samples
\rightarrow vast amount of missingness

Preprocessing

- Typical preprocessing steps
(1) Filtering
(2) Log-transformation
(3) Normalization
(9) (Summarization)
- Many methods exist

Filtering

- Reverse sequences
- Only identified by modification site (only modified peptides detected)
- Razor peptides: non-unique peptides assigned to the protein group with the most other peptides
- Contaminants
- Peptides few identifications
- Proteins that are only identified with one or a few peptides
- Filtering does not induce bias if the criterion is independent from the downstream data analysis!

Log-transformation

Variability more equal upon log transformation: often multiplicative error structure of intensity-based read-outs

Even in very clean synthetic dataset (same background, only 48 UPS proteins can be different) the marginal peptide intensity distribution across samples can be quite distinct

- Considerable effects between and within labs for replicate samples
- Considerable effects between samples with different spike-in concentration
\rightarrow Normalization is needed

Mean or median?

- Over a period of 30 years males desire to have on average 64.3 partners and females 2.8. (Miller and Fiskkin, 1997)

Mean or median?

- Over a period of 30 years males desire to have on average 64.3 partners and females 2.8. (Miller and Fiskkin, 1997)
- Over a period of 30 years males, is the median of the number of desired partners is 1 for both males and females. (Miller and

Fishkin, 1997)

Mean or median?

Mean is very sensitive to outliers!

Even in very clean synthetic dataset (same background, only 48 UPS proteins can be different) the marginal peptide intensity distribution across samples can be quite distinct

- Considerable effects between and within labs for replicate samples
- Considerable effects between samples with different spike-in concentration
\rightarrow Normalization is needed

QQ-normalized peptide intensity (CPTAC lab2)

Even in very clean synthetic dataset (same background, only 48 UPS proteins can be different) the marginal peptide intensity distribution across samples can be quite distinct

- Considerable effects between and within labs for replicate samples
- Considerable effects between samples with different spike-in concentration
\rightarrow Normalization is needed, e.g. quantile normalization

Summarization

CPTAC (Lab2, P12081ups|SYHC_HUMAN_UPS) Median Summarization

Summarization

- Strong peptide effect
- Unbalanced peptide identification
- Summarization bias
- Different precision of protein level summaries

CPTAC (Lab2, P12081ups|SYHC_HUMAN_UPS) Median Summarization

MaxLFQ summarization

a
>P63208
MPSIKLQSSDGEIFEVDVEIAKQSVTIKTMLEDLGMDDEGDD DPVPL PNVNAAILKKVIQWCTHHKDDPPPPEDDENKEKRTDD IPVWDQEFLKVDQGTLFELILAAANYLDIKGLLDVTCKTVANM IKGKTPEEIRKTFNIKNDFTEEEEAQVRKENQWCEEK
b

| Peptide
 species | Sequence | Charge |
| ---: | :---: | :---: | Mod..

c

Sample	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
A		+				+	
B		+	+			+	
C	+	+	+	+		+	+
D	+	+		+		+	+
E		+		+			+
F		+			+		

d

e

$$
\begin{array}{lll}
r_{B A}=I_{B} / I_{A} & r_{C A}=I_{C} / I_{A} & r_{C B}=I_{C} / I_{B} \\
r_{D A}=I_{D} / I_{A} & r_{D B}=I_{D} / I_{B} & r_{D C}=I_{D} / I_{C} \\
r_{E C}=I_{E} / I_{C} & r_{E D}=I_{E} / I_{D} & I_{F}=0
\end{array}
$$

Peptide based model

(1) $y_{i p}: \log 2$ intensity for peptide p of a particular protein in sample i

Peptide based model

(1) $y_{i p}: \log 2$ intensity for peptide p of a particular protein in sample i
(2) Protein by protein analysis of peptide data with linear model

Peptide based model

(1) $y_{i p}: \log 2$ intensity for peptide p of a particular protein in sample i
(2) Protein by protein analysis of peptide data with linear model

$$
\begin{gathered}
\text { peptide level } \\
y_{i p}=\beta_{p}^{\text {pep }}+\epsilon_{i p}+\begin{array}{c}
\text { protein level } \\
\beta_{i}^{\text {sample }}
\end{array}
\end{gathered}
$$

Robust estimation using observation weights

- Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...

- Iteratively fit model with observation weights $w\left(\epsilon_{i p}\right)$

$$
\operatorname{argmin}_{\beta_{1 \ldots p}^{\text {pep }}, \beta_{1 \ldots n}^{\text {samp }}}\left[\sum_{i=1}^{n} \sum_{p}^{P} w\left(\epsilon_{i p}\right)\left(y_{i p}-\beta_{p}^{\text {pep }}-\beta_{i}^{\text {samp }}\right)^{2}\right]
$$

