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Summary of Lecture 2

1. Introduce the Wright-Fisher model.

2. Genealogies in the Wright-Fisher model.

3. How to obtain the coalescent from the Wright-Fisher model.

4. Properties of coalescent models.

5. Simulating gene genealogies.



The Coalescent
I The theory of the coalescent was given in two key papers by

Sir John Kingman (formerly Vice-Chancellor of Bristol):
I Kingman, J. F. C. (1982) The coalescent. Stochastic

Processes and their Applications 13: 235–248.
I Kingman, J. F. C. (1982) On the genealogy of large

populations. Journal of Applied Probability 19A: 27–43.

(These are difficult, technical, papers and I don’t expect you
to understand them, but you might want to have a look.)

I It was also developed independently by a couple of biologists:
I Hudson, R.R., (1983) Testing the constant-rate neutral allele

model with protein sequence data. Evolution 37: 203-217
I Tajima, F. (1983) Evolutionary relationship of DNA sequences

in finite populations. Genetics 105: 437460.

(These are much easier to read.)



Genealogies and the Wright-Fisher Model

The properties of genealogies can be quite easily understood from
an idealised, clonal, model of reproduction where each individual in
a fixed population of size 2N ‘chooses’ its parent at random. This
is called the Wright-Fisher model. (If you look up Wright-Fisher on
the web you may get a bunch of formulae, but they are describing
essentially the same thing . . . ).

Note that we say the population size is 2N. This is because
conventionally the population is diploid, so there are 2N gene
copies in the population, which we model as being from a haploid
population.

Sometimes it is just easier to think of N as haploid, and I will
make it clear when I do.



Wright-Fisher Examples

This website has a toy Wright-Fisher simulator which illustrates
the genealogies you get from this model.

Note the population size N is haploid in this example. Wright-Fisher

http://guanine.evolbio.mpg.de/cgi-bin/drawWrightFisher/drawWrightFisher.cgi.pl


Coalescent basics I
In the Wright-Fisher model, the probability that two genes are
copies of the same gene (i.e. they coalesce) in the previous
generation is

1

2N
·

Why?

Each gene ‘chooses’ its parent at random.

Take a pair of genes and let one choose its parent; then the
probability the other chooses the same parent is 1/(2N).

Another way to look at it is to arrange all (2N)2 possible pairs of
parents chosen by the two genes on a grid (matrix), of which 2N
(those on the diagonal) will be identical, giving

(2N)/(2N)2 = 1/(2N)



Coalescent basics II
What is the probability that two genes coalesce in the next
generation after t generations?

We can work this through by thinking of the analogous situation:

What is the chance of getting a six on my first throw of a die
[corresponding to t = 0 in the way I have set it up]?. The answer
is obviously

1/6

.
What is the chance on the second throw [t = 1]? The answer is(

1− 1

6

)
1

6
·

I.e the probability of not getting it on the first throw, but getting it
on the second.



Coalescent Basics III
What is the chance on the third throw [t = 2]? The answer is(

1− 1

6

)2 1

6
·

I.e The probability of not getting it on the first and second throws,
but getting it on the third.

In general we can see that the probability that our random variable
T equals any particular value t is

p(T = t) =

(
1− 1

6

)t 1

6
·

This type of distribution is known as a geometric distribution, and
in our case, for the coalescent, we have:

p(T = t) =

(
1− 1

2N

)t 1

2N
·



Coalescent basics IV

Standard coalescent theory
applies to continuous-time, rather
than the discrete-time of the
Wright-Fisher.

We can get to the
continuous-time version by
assuming that N is large.

Consider the probability that two
genes coalesce after generation t,
without specifying which
generation in particular it
happened in:

P(T > t) =

(
1− 1

2N

)t

·

No coalescence up to here; 
 p = (1-1/4)  = 3/4 = 0.75 

No coalescence up to here; 
 p = (1-1/4)2  = 9/16 = 0.56 

No coalescence up to here; 
 p = (1-1/4)3  = 27/64 = 0.42 

... which means coalescence  
here or  later p = 0.42 



Coalescent basics V

For N large this probability is approximated by

P(T > t) = exp(−t/(2N))·

Even for N = 10 this isn’t too bad: e.g. for generation 5 we have
exp(−5/20) = 0·779 whereas (1− 1/20)5 = 0·774

So then
P(T ≤ t) = 1− exp(−t/(2N))·

This is a cumulative distribution function and the corresponding
density function (obtained by differentiating with respect to t), is
just an exponential distribution in which the rate of coalescence is
1/(2N):

1

2N
exp(−t/(2N))·



Coalescent basics VI

Note that we can get this result less rigorously (but possibly more
intuitively) by just taking the original geometric distribution:

p(T = t) = (1− 1

2N
)t

1

2N

and substituting exp(−t/(2N)) for (1− 1
2N )t .



Coalescent basics VII

The c.d.f. for N=100

P(T ≤ t) = 1−exp(−t/(2N))·
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The density function for N=100

p(t) = 1
2N exp(−t/(2N))·
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Coalescent basics VIII

The mean of this distribution is 2N.

(Think back to getting a six on the throws of the die: on average
we expect to hit a six on the sixth throw.)

This is the expected time we’d have to wait for coalescence of two
lineages.

So we expect the TMRCA for two genes chosen at random in the
current population to occur 2N generations ago.



Coalescent basics IX

What is the time until the first coalescence for a sample of size k?

As before, we ask what is the probability that any pair of genes has
a common ancestor in the previous generation. We assume that k
is much smaller than N, so only one pair can coalesce at a time.



Coalescent basics X

So then there are k(k − 1)/2 possible pairs. I.e. this is the number
of ways of choosing any 2 objects from k objects, written as

(k
2

)
.

If k � N so that we can ignore multiple coalescence then there are(k
2

)
chances of coalescence, each of which occurs with a probability

1/(2N). So the probability that any pair of lineages coalescence in
the previous generation is (

k

2

)
/(2N)·



Coalescent basics XI

Following exactly the same reasoning as for a single pair, for a
sample of size k � N and large N the distribution of waiting times
until first coalescence (between any pair of the k lineages) is
approximately exponential with rate:(

k

2

)
/(2N) =

k(k − 1)

4N
·

I.e. writing it out in full:

p(t) =
k(k − 1)

4N
exp(−[k(k − 1)/(4N)]t)·



Coalescent basics XII

Scaling time in the coalescent

In more formal treatments time is scaled so that one unit of scaled
time corresponds to 2N generations, and then we can let N →∞,
and in this limit the (scaled) waiting times are exponentially
distributed with rate k(k − 1)/2. (But often easier to keep
demographic parameters explicit when we want to use genetic data
to infer them.)



Modelling a genealogy I
The genealogy consists of n − 1 events with time intervals between
events, T (k), that depend on the number of lineages k = n, . . . , 2,
where n is the actual sample size. At each event a randomly chosen
pair of lineages coalesce until we reach the most recent common
ancestor (MRCA). So we can simulate a genealogy as follows:

1. To begin with we have n lineages, so set k = n and
Tcurrent = 0

2. We then simulate an exponential random variable T (k) with
rate k(k − 1)/2 (let’s assume we are working with scaled
time. . . ).

3. Choose 2 lineages at random and coalesce them.

4. Set Tcurrent = Tcurrent + T (k)

5. Set k = k − 1

6. Repeat steps 2–5 until k = 1.

7. You have then created a coalescent genealogy, and the TMRCA

is given by the value of Tcurrent



Modelling a genealogy II

The expected waiting time
for coalescence is the
reciprocal of the rate. I.e.
it’s the mean of the
exponential distribution
with that particular rate.
(I use E () to mean
‘expectation of’.) So in
this example, using scaled
time, with 4 lineages the
expected coalescence
times are respectively 1/6,
1/3 and 1.

E(T(4)) = 1/6  

E(T(3)) = 1/3  

E(T(2)) = 1  



Modelling a genealogy III

Mutations occur with a probability µ
when the DNA is copied from
generation to generation. Because
mutation is rare and we are considering
many generation, the number of
mutations along any lineage is Poisson
with mean equal µTl , where Tl is the
length of the lineage.

In this example there are 3 mutations
on the genealogy. We focus only on the
variable nucleotides. The ancestral
version of the nucleotide is
conventionally labelled ‘0’. When a
nucleotide at a particular position
mutates the ancestral type ’0’ changes
to a different nucleotide denoted by ’1’ .

000 

001 

010 

110 

000 001 010 110 



The time of the most recent common ancestor
We saw previously that for a sample of size two the expected
TMRCA = 2N; what is the expected time for a sample more
generally?

This can be easily calculated because the expectation of a sum of
independent random variables is just the sum of the expectations,
i.e.:

2N × (1 + 1/3 + 1/6 . . .)·

If we work it out, then the expected number of generations until
the MRCA is:

E (
n∑

k=2

T (k)) = 4N(1− 1/n)·

This is quite an interesting result because it says that as the
sample size gets larger the expected TMRCA = 4N — just twice as
long as for a random pair of lineages.



Measuring it in scaled time:

The expected scaled time for any two genes to coalesce is 1.

The expected scaled time until the MRCA is:

E (
n∑

k=2

T (k)) = 2(1− 1/n)

Mutations occur along each branch at a rate θ/2, where θ = 4Nµ
and can be superimposed on the (scaled) genealogy.

So the expected number of mutations in the genealogy of a sample
of size two is θ.



The number of mutations in a genealogy

I The expected number of mutations in a genealogy will be
equal to the mutation rate, µ, multiplied by the total sum of
branch lengths, L.

I The sum of the branch lengths, L, has expectation

E (L) = 2N×
(

2 + 3× 2

3× 2
+ 4× 2

4× 3
+ · · ·

)
= 4N

n−1∑
i=1

1

i

I So the expected number of mutations is

θ

n−1∑
i=1

1

i



The infinite sites mutation model I

I The mutation rate per nucleotide site is typically so low
compared to the population size that to a very good
approximation we can assume that no mutation hits the same
site twice in a genealogy.

I So, S , the number of single nucleotide polymorphisms (SNPs)
in a section of sequence, gives an estimate of θ:

θ̂W =
S∑n−1
i=1

1
i

·

This is known as Watterson’s estimator.



The infinite sites mutation model II

I Another estimator for θ can be obtained by taking all pairs of
sequences from the sample, and counting the number of
pairwise differences in the two sequences. The average of this
over all n(n − 1)/2 pairs is usually called π, the average
pairwise difference. As we have seen, the expected number of
mutations between any pair of sequences is θ, giving another
estimator θ̂π = π.

I So, in principle, if we know the mutation rate, we can obtain
an estimate of N from the nucleotide data, using either of
these two estimators.



The generality of the coalescent model I

We have derived the coalescent from consideration of the
Wright-Fisher model, which may seem rather contrived.

In fact a lot of (very mathematical) work has been carried out to
examine the limiting behaviour of many life-history models
(overlapping generations, inbreeding, non-random mating, variance
in reproductive success), as you let N get large, and they generally
tend to the coalescent (with some exceptions. . . ).

Intuitively you can see why this might be so: if the sample size is
very small compared to the population size, and the population
size is very large, then there are many generations between
coalescent events, and the nitty-gritty details of what happens in
these generations gets averaged out.



The generality of the coalescent model II

However although the genealogies follow the coalescent predictions
very closely, the scaling of time may vary between life-history
models. For example, when there is a variance σ2 in the number of
offspring among individuals, we need to work with 2N/σ2. But
since we normally don’t know what σ2 is, it just gets parcelled up
in N. So N becomes an “effective population size” and may have
very little relation to any census value of population size that
would be measured by an ecologist.

Hammering home the point: if you have a very good estimate of
the mutation rate, and good sequence data, you can get a good
estimate of N, but only if the population behaved like the idealised
Wright-Fisher model would the value of N you estimate have any
bearing on the actual number of individuals in the population.



The variability of coalescent genealogies

It is very easy to simulate genealogies. I have made available on
Blackboard an R script and some instructions on how to simulate
and visualise genealogies in the R statistical programming
environment using a very famous program (among population
geneticists . . . ) called ms (‘make samples’), written by Dick
Hudson, one of the founders of coalescent theory. (Don’t worry
this is for your interest only; you won’t be examined on it).

The next few slides will give examples of genealogies for a sample
of size 100 using this program.

In the following slides note that ms scales time by 4N rather than
2N, so the expected height of the tree is 1 rather than 2 for a large
sample.
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466 

Compare with the Sardinian
genealogy of the Y-chromosome:



The next lecture

We will revisit the Y-chromosome papers of the previous lecture,
and try and interpret some of the results in terms of the theory
developed here.

We will then look at the effect of variable population size on
genealogies.
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