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Summary of Lecture 4

1. Models of population structure

2. The coalescent with migration

3. FST and coalescent theory

4. Example: humpback whales



Population Structure

There are three basic patterns of population structure that are
often considered.
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The coalescent with migration

I I’ll first describe how you could simulate a genealogy with
migration to give an understanding of what the genealogy
might look like.

I Discuss some example genealogies.

I Discuss the expected TMRCA for a pair of samples under
migration, which is rather counterintuitive.

I Introduce a quantity (discussed in the papers we will look at)
called FST with is frequently used to describe population
structure.



Migration I

Take the simplest case of 2 demes exchanging genes (let’s work
with unscaled time). A ‘deme’ is a population geneticist’s way of
saying ‘population’

Let’s call the migration rate m. You can think of it as the
probability that a randomly chosen gene copy in the deme
originated from another deme in the previous generation. In each
generation a lineage in deme 1 has a probability m1 of being an
immigrant from deme 2. For deme 2 it is m2

Assume deme 1 has population size N1, and deme 2 has
population size N2

Assume that are n1 gene copies sampled from deme 1; n2 gene
copies sampled from deme 2.



Migration II

There are then 4 possible events:

I Coalescence in population 1 with rate
(n1
2

)
/(2N1).

I Coalescence in population 2 with rate
(n2
2

)
/(2N2).

I Migration (backwards in time) from population 1 to
population 2 with rate n1m1

I Migration (backwards in time) from population 2 to
population 1 with rate n2m2



Migration III

The sum of these rates gives the total rate of an event
(irrespective of what it is). We simulate events using the total
rate, and then decide what the event is with probability equal to its
rate as a proportion of the total rate. So:

The waiting time to an event is exponentially distributed with rate

R =

(
n1

2

)
/(2N1) +

(
n2

2

)
/(2N2) + n1m1 + n2m2·

And (for example) the probability that it is a migration from
population i is then nimi/R.

In this way we can build up a genealogy.



Some example genealogies
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Some interesting results with migration

If we assume there are d demes each of size N, with equal
migration rate, m, then:

I The expected time back to the most recent common ancestor
for 2 lineages from the same deme, tw , is 2Nd

I The expected time for 2 lineages from different demes, tb, is
2Nd(1 + d−1

4Nmd )

(for a derivation see the Hein et al book.)
I.e. irrespective of the migration rate the expected time back to a
common ancestor remains the same for 2 genes sampled from the
same deme. The intuition is that either you coalesce in the deme
or you migrate out. If m is low then most of the time you coalesce,
on a timescale of 2N. However if you migrate out, then you can
take a very long time to coalesce. When you do the maths these
effects balance, so that the average stays the same at 2Nd .



Example plots with 4Nm=0.1
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FST I

The quantity FST is used very commonly in population genetic
analysis.

Unfortunately, although it is very widely used, there is little
consensus about what it actually is, or how it can be defined
(Rousset, 2012).

Many people think of it as a statistic for describing how genetically
differentiated two samples are: it varies from 0 (identical gene
frequencies) to 1 (maximally different gene frequencies).
However you can also think of it as a parameter in a model, but
there is not a lot agreement of what this parameter is.

The most widely used estimator of FST is that of Weir and
Cockerham (I won’t give it here, but the Rousset article gives
useful pointers).



FST II

For low-mutation-rate markers (like SNPs. . . ) it is an unbiased
estimator of this quantity:

tw − tb
tb

We saw tw and tb in the earlier slide: they are the expected TMRCA

for pairs of genes taken within and between demes.

It is very useful to then define the parameter FST as:

FST =
tw − tb

tb
=

1

1 + d
d−14Nm

When d gets very big (the ‘infinite island model’) this reduces to a
classic formula:

FST =
1

1 + 4Nm



FST III

To add yet another complication (or very interesting connection),
if FST is defined by this equation, then a rather different way to
think about it is that it is the probability that two gene copies in a
deme coalesce backward in time before either of them migrates.

We can easily see this using the relative rates argument I used
earlier for simulating a genealogy with migration.

The total rate of migration or coalescence within a particular deme
is

2m +
1

2N
·

So the chance that the first event is a coalescence is

1
2N

2m + 1
2N

=
1

1 + 4Nm
= FST



Example: Global diversity and oceanic divergence of
humpback whales (Megaptera novaeangliae)

Jackson et al (2014) report a study in which they sequenced
mtDNA control region (the most variable part) from almost 3000
whales taken from the North Pacific, North Atlantic, and Southern
Hemisphere. They also sequenced 8 nuclear loci from 70
individuals worldwide.



Humpback whale: aims

Previous studies had indicated that there was evidence of
long-term gene flow between different oceans. The aim of the
study was to obtain a better resolution on estimates of gene flow
by using nuclear genes as well as mitochondrial genes.

Although they carried out a number of analyses, I concentrate here
on the FST -based analyses and on model-based estimates of gene
flow between the different oceans.



FST analysis I

The table below shows FST (below diagonal) and φST (above
diagonal) estimates from the mitochondrial and nuclear data. The
diagonal contains estimates of π per base position averaged over
the sequences.

There are a number of features of interest in these data:

I The φST value tends to be much higher than FST for the
mtDNA data.

I What is φST ?

I Before answering this, a point to bear in mind is that FST is
being referred to as a statistic here — specifically, the value of
the Weir & Cockerham estimator.



FST analysis II

I This is only an unbiased estimator of FST as I defined it
earlier when mutation rates are low.

I Why?

I Because (effectively. . . ) it assumes that non-identical
sequences within a population must have come from another
population. But if the mutation rate is high this will not be
true.

I When mutation rates are high the W&C estimator is too low.

I Back to φST . . . This is a direct estimator of FST as defined
by:

FST =
tw − tb

tb
·

I It estimates tw and tb directly by substituting the average
pairwise differences πw and πb (note the unknown mutation
rates will cancel out).



FST analysis III

I You can see that there is not such a large discrepancy for the
nuclear sequences because their mutation rate is lower.

I Concentrating on the φST s, the other main pattern is that it
is much bigger for the mitochondrial genes than the nuclear
genes. Why is this?

I If we assume that the migration rate for males and females is
the same (not necessarily a good assumption), and the
number of males and females is the same, then the expected
FST depends on 2Nfm for mitochondrial genes and
4(Nf + Nm)m for nuclear genes, a number 4 times larger. I.e.
for large Nm we expect FST to be 4 times higher for mtDNA.



FST analysis IV

I What does this table tell us about the biology?

I There would appear to be more gene flow between the
southern oceans and North Atlantic (nuclear φST estimate of
0.05). The most restricted gene flow is between the Northern
Pacific and the North Atlantic (nuclear φST = 0·15).

I (For comparison FST for the three most differentiated human
groups, Africans, Europeans, Asians, is around 0.13.)



Estimation of migration rates

I Although the FST estimates could then be used to estimate
scaled migration, the authors take a likelihood-based
approach, which should use the data more effectively.

I They use a program called migrate-n, which uses Markov
chain Monte Carlo (MCMC) to estimate the parameter values
from the data.



Markov Chain Monte Carlo (MCMC) and Genealogies

I From coalescent theory we can calculate the probability,
p(G ,D|φ) of obtaining any particular tree G and data set D
(see Beaumont and Rannala, 2003 and Marjoram and Tavaré,
2006 for accessible reviews of these methods), conditional
(the ‘|’ in the expression above) on a set of demographic and
mutational parameters in φ.

I In a Bayesian calculation we want to invert the relation above,
and compute p(φ,G |D), which is called the posterior
distribution. If we could compute this (essentially impossible),
it would give the probability of obtaining any set of parameter
values and genealogy, given the data.

I Markov chain Monte Carlo (MCMC) allows you to sample
values from p(φ,G |D) knowing only p(G ,D|φ).

I These are autocorrelated values, but if you have enough of
them you can build up an accurate picture of the posterior
distribution.



(From Beaumont and Rannala, 2004)



MCMC and Genealogies

I In this picture the coloured blocks represent the probability of
obtaining the data and a particular genealogy.

I The histogram bars represent the sum of this probability over
all the genealogies, for a particular value of θ.

I With the MCMC algorithm you jump either from genealogy to
genealogy keeping θ fixed, or from value of θ to value of θ
keeping the genealogy fixed (or both, not shown here).

I The length of time you remain without jumping is in
proportion to the size of the coloured blocks p(G ,D|θ).

I If you ignore the the genealogies that are generated, you end
up sampling from P(θ|D), marginal (averaged over) all the
genealogies (i.e. giving the overall histogram in this figure).



MCMC with Migration

I In this case the model follows exactly the same coalescent
model that we have described in this lecture.

I Rather than simulating coalescent genealogies, migrate-n
uses coalescent theory to compute the probability of jointly
getting a genealogy and the data and uses MCMC to generate
samples from the posterior distribution of migration rates and
genealogies conditional on the data.

I We treat the genealogies as a nuisance parameter and throw
them away, and look at the distribution of migration rates.



Estimated migration rates between oceans I

I This shows posterior distributions for the migration rates

I Ne refers to the population size of males and females together.

I The grey dashed line is the prior (the distribution of the
parameter irrespective of the data).

I The two black curves are for two sets of mtDNA sequences.

I The red curve is for nuclear DNA.



Estimated migration rates between oceans II

I Generally the nuclear DNA posterior is much tighter.

I We can see that typically the value of Nm can be between 0.5
and 2 for the nuclear markers, and it is pretty similar in all
directions.

I These are quite high values, and consistent with the φST
values in the previous table.

I You can see that an advantage of this approach is that it also
provides some measure of accuracy of the estimates, which
would not be straightforward from the φST table.

I Look back at the coalescent genealogies for different values of
Nm. Do you think these are particularly differentiated
populations?



Next Lecture

We will look at the genealogy of recombining sequences, with a
view to modelling whole-genome data.
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